
Conga
User Guide

Conga version 3.5

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2024 by Dyalog Limited
All rights reserved.

Conga User Guide

Conga version 3.5
Document Revision: 20240129_350

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, JavaScript™ and Java™ are registered trademarks of Oracle and/or its
affiliates.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
3 Installation 5

3.1 Compatibility 5
3.1.1 Compatibility with Applications Using Conga Version 2.x 5

3.2 Initialisation 6
4 Getting Started 8

4.1 Conga Objects 8
4.1.1 Conga Object Types 8
4.1.2 Conga Object States 10
4.1.3 Conga Object Modes 13

4.2 Root Objects 16
4.3 A Simple Conga Client 17
4.4 A Simple Conga Server 19
4.5 Command Mode 20
4.6 Parallel Commands 22

4.6.1 Multi-threading 23
5 Secure Connections 25

5.1 CA Certificates 26
5.2 Client and Server Certificates 27

5.2.1 Certificate Stores 28
5.2.2 Revocation Lists 28

5.3 Creating a Secure Client 28
5.3.1 Upgrading to a Secure Client 31

5.4 Creating a Secure Server 31
5.4.1 Upgrading to a Secure Connection 32

5.5 Using the DRC.X509Cert Class 33
5.5.1 Certificate Chains 34

6 HTTP Mode 36
6.1 Receiving HTTP Messages 36
6.2 HTTP Mode Events 37

6.2.1 Event: HTTPHeader 38
6.2.2 Event: HTTPBody 39
6.2.3 Event: HTTPChunk 39
6.2.4 Event: HTTPTrailer 39
6.2.5 Event: HTTPFail 40
6.2.6 Event: HTTPError 40

Conga User Guide

revision 20240129_350 i

6.3 Limiting HTTP Message Size 40
6.4 Sending HTTP Messages 41
6.5 WebSocket Protocol 42

6.5.1 Client-side WebSocket Upgrade 42
6.5.2 Server-side WebSocket Upgrade 46
6.5.3 Transmitting WebSocket Data 47
6.5.4 Receiving WebSocket Data 48
6.5.5 Secure WebSockets 48

7 The Conga Workspace 50
8 Utilities and Samples 51

8.1 Utilities 51
8.2 Samples 51

9 Advanced Usage 53
9.1 ConnectionOnly Property 53
9.2 Sending Files 53
9.3 Compression Level 55
9.4 Temporarily Prevent New Connections 56
9.5 Allow/Deny Connections from Specific Address Ranges 56
9.6 Timeout and Closed Events 57
9.7 Sent Event 58
9.8 Options Parameter 58
9.9 Magic Parameter 60
9.10 HTTP/1.1 Tunnelling 61

A Technical Reference 63
A.1 Return Codes 63
A.2 Conga Object Properties 64
A.3 Function: Conga.Init 72
A.4 Function: Conga.Magic 73
A.5 Function: Conga.New 74
A.6 Function: Conga.RootNames 75
A.7 Function: DRC.Certs 76
A.8 Function: DRC.ClientAuth 77
A.9 Function: DRC.Close 77
A.10 Function: DRC.Clt 78
A.11 Function: DRC.DecodeOptions 80
A.12 Function: DRC.Describe 81
A.13 Function: DRC.Error 82
A.14 Function: DRC.Exists 82
A.15 Function: DRC.GetProp 83
A.16 Function: DRC.Init 84
A.17 Function: DRC.Names 84
A.18 Namespace: DRC.Options 85
A.19 Function: DRC.Progress 86
A.20 Function: DRC.ReadCertFromFile 86

Conga User Guide

revision 20240129_350 ii

A.21 Function: DRC.ReadCertFromFolder 87
A.22 Function: DRC.ReadCertFromStore 88
A.23 Function: DRC.ReadCertUrls 88
A.24 Function: DRC.Respond 89
A.25 Function: DRC.RootName 90
A.26 Function: DRC.Send 90
A.27 Function: DRC.ServerAuth 95
A.28 Function: DRC.SetProp 95
A.29 Function: DRC.Srv 96
A.30 Function: DRC.Tree 99
A.31 Function: DRC.Version 101
A.32 Function: DRC.Wait 101
A.33 Class: DRC.X509Cert 104

A.33.1 Instances of the DRC.X509Cert Class 106
B Certificates 109

B.1 PEM File Format 109
B.2 Generating Certificates and Keys 110

C TLS Flags 114
D Conga Libraries 116
E Error Codes 117
F Change History 120

F.1 Version 3.5 120
F.2 Version 3.4 120
F.3 Version 3.3 121
F.4 Version 3.2 121
F.5 Version 3.1 122
F.6 Version 3.0 122
F.7 Version 2.7 123
F.8 Version 2.6 124
F.9 Version 2.5 124
F.10 Version 2.4 124
F.11 Version 2.3 125
F.12 Version 2.2 125
F.13 Version 2.1 126

Index 127

Conga User Guide

revision 20240129_350 iii

1 About This Document

This document is a complete guide to Conga, Dyalog's framework for TCP/IP
communications. It describes the tools with which Conga can be used to create a
variety of clients and servers using protocols based on TCP/IP, including HTTP, HTTPS,
FTP, Telnet and SMTP. It covers Conga support for secure communications (using
SSL/TLS) and communication between APL processes (allowing them to exchange
native APL data directly). It also introduces the Conga workspace, various
samples/utilities and contains a technical reference of the namespaces, classes and
functions provided with Conga.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog and
server/client connection protocols; a working knowledge of HTTP/FTP/SMTP is
needed to understand the samples provided.

For information on the resources available to help develop your Dyalog knowledge,
see https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Material of particular significance or relevance.

revision 20240129_350 1

Conga User Guide

https://www.dyalog.com/introduction.htm

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

A full list of the platforms on which Dyalog version 19.0 is supported is available at
https://www.dyalog.com/dyalog/current-platforms.htm. Although the Dyalog
programming language is identical on all platforms, differences do exist in the way
some functionality is implemented and in the tools and interfaces that are available.
Differences in behaviour between operating systems are identified with the following
icons (representing macOS, Linux, Microsoft Windows and UNIX respectively):

revision 20240129_350 2

Conga User Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

Conga (also known as the Dyalog Remote Communicator) is a tool for communication
between applications. It can transmit APL arrays between two Dyalog applications
that both use Conga and it can exchange messages with many other applications, for
example, HTTP servers (also known as web servers), web browsers and other web
clients/servers including Telnet, SMTP and POP3.

Uses of Conga include, but are not limited to:
l retrieving information from – or uploading data to – the internet.
l accessing internet-based services like FTP, SMTP or Telnet.
l writing an APL application that acts as a Web (HTTP) Server, mail server or any

other kind of service available over an intranet or the internet.
l implementing APL Remote Procedure Call (RPC) servers; these receive APL

arrays from client applications, process data and return APL arrays as the
result.

Conga supports secure communication using TLS (Transport Layer Security), which is
the successor to SSL (Secure Sockets Layer). Conga makes it easy for APL developers
to embed client or server components in APL applications and simplifies the process
of making remote calls in a multi-threaded client environment.

Although Conga currently only uses the TCP protocol, other communication
mechanisms could be added in the future. Conga hides many of the details of TCP
socket handling and notifies the application of incoming data, connection events and
errors so that all the application needs to do is handle the data that arrives. Dyalog
Ltd recommends Conga as the mechanism for handling TCP-based communications in
preference to the now outdated TCPSocket object.

Conga is used in many Dyalog tools including MiServer (Dyalog's APL-based web
server), Jarvis (the stand-alone web service framework), HTTPCommand, the Dyalog
File Server, and isolates.

revision 20240129_350 3

Conga User Guide

If you redistribute code that uses Conga, please see the Licences for third-party
components document in the [DYALOG]/Help directory of your installation.

revision 20240129_350 4

Conga User Guide

3 Installation

Conga is implemented as a library. The library is loaded and accessed through by a set
of API functions.

Conga is installed with Dyalog and no additional installation is required.

3.1 Compatibility
All versions of Conga are:

l compatible with all supported Dyalog versions.
l compatible with each other.

When the server and client are both Conga objects, they:
l do not have to be running the same version of Conga.
l do not have to be running the same version of Dyalog.

However, standard Dyalog interoperability rules apply – any specific functionality that
is required (in Conga or Dyalog) must be available at both ends of the connection. For
details of the changes made in each Conga version, see Appendix F.

For compression to work, the client and server both need to support the same level of
compression (see Section 9.3).

3.1.1 Compatibility with Applications Using Conga Version 2.x

Conga version 2.x was initialised using the DRC namespace – this contains all of the
API functions that are necessary to access the Conga library. Conga version 3.x takes a
different approach and is initialised by creating an instance of the Conga.LIB class.
This provides APIs that are syntactically identical to those in the DRC namespace and
enables multiple Conga Root objects to be run.

revision 20240129_350 5

Conga User Guide

For backwards compatibility, the DRC namespace is still included in the conga
workspace – this means that existing applications will continue to work without
requiring any modification. However, Dyalog Ltd recommends that you update any
legacy applications to use the Conga.LIB approach and that any new applications
also use this approach.

3.2 Initialisation
Before using any of the Conga API functions, the system needs to be initialised by
loading the library.

To initialise the system

1. Access the Conga namespace in the appropriate way:
l If you are experimenting with functionality before adding Conga to an

application, then load the conga workspace:
)LOAD conga

...\ws\conga.dws saved Fri Feb 22 17:21:04 2019

l If you are writing an application whose behaviour should remain
unchanged irrespective of future changes to Conga, then copy the
Conga namespace from the conga workspace into your application's
workspace and then save the application workspace. This is a common
scenario when writing a stand-alone application that will be packaged
and distributed:

'Conga' ⎕CY 'conga'

l If you are writing an application and want the current version of Conga
to be loaded dynamically, include the following statement in your
application's start-up code (this is a common scenario when writing an
application that acts as a server):

'Conga' ⎕CY 'conga'

If you intend to ship an application that includes Conga, then the
relevant libraries will also need to be shipped. For more
information, see Appendix D.

2. Initialise an instance of the Conga root object:
DRC←Conga.Init ''

revision 20240129_350 6

Conga User Guide

This connects to the Conga root object named DEFAULT, which is shared by all
applications that use an empty right argument to Conga.Init. By naming the
instantiation DRC, existing application code that refers to the DRC namespace
should continue to work without modification.

If you have a Conga version 2.x application, then replacing DRC.Init
'' with DRC←Conga.Init '' and ensuring that the Conga namespace
rather than the DRC namespace is loaded into your workspace, means
that the Conga version 2.x application should run unchanged.

The examples throughout this document assume that the system has already been
initialised, that is, the above steps have already been followed.

Throughout this document, unless explicitly noted otherwise, references to
DRC represent a Conga library instance initialised using DRC←Conga.Init ''
rather than the legacy DRC namespace.

revision 20240129_350 7

Conga User Guide

4 Getting Started

This chapter introduces Conga client and server objects and demonstrates their use
through simple examples.

The purpose and syntax of the functions and methods used in this chapter are
detailed in Appendix A.

4.1 Conga Objects
A Conga object is a named object created inside Conga but outside the workspace.
Each Conga object has specific properties that can be queried and/or set (some
properties are read-only).

Conga object names cannot exceed 32 characters in length and must not contain null
characters.

The Conga root object is referred to as '.'.

A name can be assigned to Conga server and client objects when they are created
using the DRC.Srv and DRV.Clt functions respectively; if an empty vector is
specified ('') then Conga will generate a name. Subsequent uses of the server or
client objects (for example, to send a message using DRC.Send or listen for messages
using DRC.Wait) require their name.

Each Conga object has a type, state and mode.

4.1.1 Conga Object Types

There are six possible types of Conga object – these are listed with their identifying
object type code in Table 4-1 (object type codes are used by several of the functions
in Conga – see Appendix A).

revision 20240129_350 8

Conga User Guide

Code Object Type Description

0 Root
The highest level object. The root object contains
information about the Conga installation; it is created by
the DRC.Init or Conga.Init function.

1 Server*

A server object listens for connections from clients – the
client can be any TCP/IP client and does not have to be a
Conga object. It also receives, processes and responds to
requests from connections.

2 Client*
A client object connects to a server, sends requests to it and
receives responses from it; the server can be any TCP/IP
server and does not have to be a Conga object.

3 Connection
A server object can respond to multiple client connections;
a connection object maintains information pertaining to
each client connection.

4 Command

A command object represents an individual request (from a
client) or response (from a server). Command objects only
exists for servers and clients in Commandmode (see
Section 4.1.3).

5 Message

Message objects are created by servers using the
DRC.Progress function and sent to client objects.
Message objects only exist for servers and clients in
Commandmode (see Section 4.1.3).

Table 4-1: Conga object types

* A client is said to be using Conga if it is communicating through a client instance
that was set up using the DRC.Clt function (see Section A.10); a server is said to be
using Conga if it is communicating through a server instance that was set up using the
DRC.Srv function (see Section A.29). The other end of the connection can also be
using Conga or it can be a non-Conga object that understands TCP/IP (for example, a
web browser or web server).

The ERD (Entity-Relationship Diagram) in Figure 4-1 shows how servers and clients are
related to each other and to other Conga objects. At least one of the server side or
client side must be using Conga.

revision 20240129_350 9

Conga User Guide

Figure 4-1: Conga object ERD (standard crow's foot notation)

Communication between a server's connection object and a client object depend on
the connection mode (see Section 4.1.3).

The ERD in Figure 4-2 shows how the remaining two Conga object types relate to the
connection and client objects – this is only valid when both the server and client are
in Commandmode. The sequence of events starts when the client sends a command
through the connection to the server; optionally, the server sends messages through
the connection to the client before sending a final response to the command.

Figure 4-2: Communication ERD in Command mode (standard crow's foot notation)

For more information on connection modes, see Section 4.1.3 and Section 4.5.

4.1.2 Conga Object States

Each Conga object has a state, that is, the temporary condition in which it exists as it
progresses through its cycle from creation to deletion. The possible states and the
Conga object types (Section 4.1.1) that can exist in each of these states are detailed in
Table 4-2.

revision 20240129_350 10

Conga User Guide

Code Object State
Conga Object Types

Description
0 1 2 3 4 5

0 New x x x x x x

Transient state that
the object exists in
after it is created but
before it has been
initialised.

1 Incoming x

A connection has been
established but a
Connect event has
not yet been received.

2 RootInit x

The root object exists
and is connected to
the Conga library
(Microsoft Windows
DLL or UNIX/Linux
Shared Library).

3 Listen x
The server is listening
for incoming
connection attempts.

4 Connected x x

The client/connection
is connected to its
connection/client
peer.

5 APL x x

The thread that
handles socket
communications has a
full buffer and no
further processing can
occur until the
application calls the
DRC.Wait function.

Table 4-2: Conga object states and the object types that can exist in those states

revision 20240129_350 11

Conga User Guide

Code Object State
Conga Object Types

Description
0 1 2 3 4 5

6 ReadyToSend x x Data is ready to be
sent.

7 Sending x x Sending data.

8 Processing x

The command has
been passed to the
server but no
response has been
issued.

9 ReadyToRecv x x Waiting for data.

10 Receiving x x Receiving data.

11 Finished x x x x x x

All data has been
transmitted/received,
connections closed
and commands
finished.

12 MarkedForDeletion x x x x x x The Conga object is
ready for deletion.

13 Error x x x x x An error has occurred.

14 internal - - - - - - internal

15 internal - - - - - - internal

16 SocketClosed x x The socket has been
closed.

Table 4-2: Conga object states and the object types that can exist in those states
(continued)

revision 20240129_350 12

Conga User Guide

Code Object State
Conga Object Types

Description
0 1 2 3 4 5

17 APLLast x x

The connection has
been closed but
uncollected data still
exists in the thread
that handles socket
communications.

18 SSL x x

The client/connection
is negotiating an SSL
connection with its
connection/client
peer.

Table 4-2: Conga object states and the object types that can exist in those states
(continued)

4.1.3 Conga Object Modes

Conga clients and servers support six different modes for connection, that is, formats
in which data can be transmitted:

l Text

Allows transmission of character strings. Character strings can only comprise
characters with Unicode code points less than 256. To transmit characters
outside this range, Dyalog Ltd recommends that you either use UTF-8 character
encoding (for information on this, see ⎕UCS in the Dyalog APL Language
Reference Guide) or switch to Rawmode and convert the character string to
the appropriate format (for example, by applying ⎕UCS).

l BlkText

As Textmode, but each data transmission is considered as a block. If a block
exceeds the maximum size (as defined by the BufferSize parameter of the
DRC.Clt/DRC.Srv function) then the peer object receiving the transmission
will return error 1135 (buffersize exceeded). Each block includes a header
stating the:

o block length: 32-bit integer giving the exact length of the block.
Determined by the network/operating system.

revision 20240129_350 13

Conga User Guide

o magic number (optional): 32-bit integer used to check that the data has
not been corrupted. Set using the DRC.Clt/DRC.Srv function (the
Magic parameter).

Each block is assigned the event name Block. If the connection closes before
all blocks have been processed, then the final block tobe processed is assigned
the event name BlockLast. The third element returned by the DRC.Wait
function indicates the event name (see Section A.32).

Unless explicitly specified otherwise, information about Textmode can be
assumed to apply to BlkTextmode too. Only valid when both the server and
client are using Conga.

l Raw

Similar to Textmode, except that data is represented as integers in the range 0
to 255. For coding simplicity, negative integers -128 to -1 are also accepted and
mapped to 128-255. Single-byte characters (type 80 or 82) can also be sent

l BlkRaw

As Rawmode, but each data transmission is considered as a block. If a block
exceeds the maximum size (as defined by the BufferSize parameter of the
DRC.Clt/DRC.Srv function) then the peer object receiving the transmission
can reject it. Each block includes a header stating the:

o block length: 32-bit integer giving the exact length of the block.
Determined by the network/operating system.

o magic number (optional): 32-bit integer used to check that the data has
not been corrupted. Set using the DRC.Clt/DRC.Srv function (the
Magic parameter).

Each block is assigned the event name Block. If the connection closes before
all blocks have been processed, then the final block to be processed is assigned
the event name BlockLast. The third element returned by the DRC.Wait
function indicates the event name (see Section A.32).

Unless explicitly specified otherwise, information about Rawmode can be
assumed to apply to BlkRawmode too. Only valid when both the server and
client are using Conga.

revision 20240129_350 14

Conga User Guide

l Command

Each transmission is a complete APL object in a binary format. This is the
default mode. Only valid when both the server and client are using Conga. For
more information on Commandmode, see Section 4.5.

l HTTP

The standard Receive and Block events are replaced with events that signal
the arrival of a complete piece of HTTP protocol, that is, HTTPHeader,
HTTPBody, HTTPChunk and HTTPTrailer. This simplifies the task of
receiving HTTP data and significantly improves performance. For more
information, see Chapter 6.

A client and server can only exchange data if they are running in compatible modes.
This means that:

l a Commandmode client must be connected to a Commandmode server. To
use Commandmode, both the client and server need to be using Conga.

l a Textmode or Rawmode client must be connected to a Textmode or Raw
mode server; BlkTextmode and BlkRawmode are interchangeable with Text
mode and Rawmode respectively, as long as the requisite header (containing
the field length and magic number) is added to the message being sent. Text
mode and Rawmode are typically used when only one end of the connection is
using Conga.

l an HTTPmode client must be connected to an HTTPmode server. Either the
client, the server, or both could be running Conga in HTTPmode. For example,
any HTTP client (for example, as a web browser) can connect to an HTTP-mode
Conga server, and an HTTP-mode Conga client can connect to any HTTP server
(for example, a web server or web service server).

Commandmode is the optimal way for APL clients and servers to communicate with
each other, because:

l the internal representation is the binary format used by APL; this is more
compact than a textual representation.

l numbers can be transmitted without having to be formatted and interpreted.
l no buffer size needs to be declared.

In Commandmode, BlkTextmode or BlkRawmode, each transmission comprises an
entire APL array or block of data; the DRC.Wait function does not report incoming
data until the entire APL array or block of data has arrived. In Textmode and Raw
mode, byte streams are transmitted – in Textmode these are translated to a
character vector on receipt, in Rawmode, integers between 0 and 255 are returned;

revision 20240129_350 15

Conga User Guide

the DRC.Wait function reports incoming data each time a TCP packet arrives or when
the receive buffer is full. The recipient may need to buffer incoming data in the
workspace and analyse it to determine whether a complete message has arrived.

In Text and Rawmodes, an EOM termination string can be set. In this situation, the
DRC.Wait function terminates on receipt of the specified termination string. If an
empty termination string is specified, then the DRC.Wait function terminates when
the buffer contains BufferSize bytes (see Section A.10 and Section A.29). If an EOM
termination string is not specified, then the DRC.Wait function returns data each
time a TCP packet is received. If a TCP packet is larger than BufferSize bytes then
the data is returned in blocks of BufferSize bytes.

4.2 Root Objects
When an application and the tools used to maintain it both use TCP communications,
they need to be independent so that each can be restarted/reset without interfering
with the others. However, it is increasingly common that more than one component
in an application uses Conga, leading to potential name conflicts between
client/server objects and clashes between different state settings.

If a component initialises Conga using the Conga.Init function, then it has its own
Root object under which Conga objects are created and operations are performed.
This means that existing Conga connections can be disconnected and restarted
without interfering with other components.

If Conga version 2.x is initialised using the DRC.Init function, then all
components in the same process use the same DRC namespace. The first use
calls the DRC.Init function and receives a clean return code, and subsequent
calls to the DRC.Init function warn that Conga is already initialised. If a
component resets or re-initialises Conga, then all other components are
impacted. Although the DRC namespace is still provided for backwards
compatibility, Dyalog Ltd recommends that you migrate existing applications to
use the Conga.Init function (see Section 3.2).

Although you can use an empty right argument to the Conga.Init function to
connect to the default root, for an application that might need to manage the state of
Conga, Dyalog Ltd recommends initialising Conga using a right argument to identify
your application. For example:

DRC←Conga.Init 'MyApp'

revision 20240129_350 16

Conga User Guide

This statement can safely be called anywhere in an application – if a root with that
name already exists, then a reference will be returned to the existing root instance.

To ensure that a new instance is created, use the Conga.New function. If this is called
with an empty argument then a new unused root name is generated; if a non-empty
argument is supplied then an error will be generated if the root name is already in
use. The Conga.RootNames functions returns a list of all existing roots:

DRC←Conga.Init '' ⍝ Use the default root
DRC1←Conga.New '' ⍝ Create new root with generated name
Conga.RootNames

DEFAULT IC1

To re-initialise a root, erase the reference (all references) to the instance; it will be
cleaned up, and you can create a new one.

The intention is not that you create a large number of roots (the process of
creating and tearing down roots is expensive and complex.) Components might
need a separate root, but you should not create new roots to, for example,
create queries on the internet – in this situation, use the default root that you
can get a reference to by passing an empty argument to Conga.Init.

4.3 A Simple Conga Client
A Conga client establishes contact with a service that is already running and listening
on a pre-determined port at a known TCP address. The service could be an APL
application that has created a Conga server or it could be any application or service
that provides services through TCP sockets. For example, most UNIX systems (and
many Microsoft Windows servers) provide a set of simple services like a Time of Day
(TOD) service or a Quote of the Day (QOTD) service, both of which respond with a text
message as soon as a connection is made to them; once the message has been sent,
they immediately close the connection.

The function DRC.Clt can be used to create a Conga client. In the following example,
this function is called with five elements in its right argument:

l the name to be used for the client object (C1)
l the IP address or name of the server machine providing the service

(localhost)
l the port on which the service is listening (13 – the TOD service)
l the type of socket (Text)
l the size (in bytes) of the buffer that should be created to receive data (1000)

revision 20240129_350 17

Conga User Guide

For this example to generate the error documented, run it on the Microsoft
Windows operating system with the TOD service disabled (this can be done by
going to Control Panel > Programs and Features > Turn Windows features on
or off and unselecting the Simple TCPIP services (i.e. echo, daytime etc)
checkbox, then rebooting).

DRC.Clt 'C1' 'localhost' 13 'Text' 1000
1111 ERR_CONNECT_DATA /* Could not connect to host data port */

The error message that is generated follows the syntax for all error codes generated
by Conga functions (see Section A.1), that is, it is a vector in which:

l [1] is a return code (see Section A.1)
l [2] is the error name
l [3] is, optionally, additional information about the error.

This issue can be resolved in any of the following ways:
l Enable the service on localhost. This can be done by going to Control Panel >

Programs and Features > Turn Windows features on or off and selecting the
Simple TCPIP services (i.e. echo, daytime etc) checkbox. Reboot, then rerun
the DRC.Clt function call:

DRC.Clt 'C1' 'localhost' 13 'Text'
0 C1

The result code of zero indicates that the client was successfully created (any
other code indicates failure).

l Call a different server machine that does provide a TOD service, for example:

DRC.Clt 'C1' 'myLinuxBox' 13 'Text'
0 C1

The result code of zero indicates that the client was successfully created (any
other code indicates failure).

After the client object has been successfully created, incoming data can be received.
Receiving data from the server involves calling the DRC.Wait function with the name
of the client. For example:

]DISP DRC.Wait 'C1'
┌→┬──┬─────┬───────────────────┐
│0│C1│Block│15:01:44 07/10/2015│
│ │ │ │ │
└─┴─→┴────→┴──────────────────→┘

revision 20240129_350 18

Conga User Guide

The returned message is a vector in which:
l [1] is the return code
l [2] is the object name
l [3] is the type of event (see A.32)
l [4] is data associated with the event

The client object can now be closed (good practice):

DRC.Close 'C1'
0

4.4 A Simple Conga Server
The TOD service referred to in Section 4.3 is a very simple server and can be
implemented by calling the TODServer.RunText function in the TODServer
namespace (loaded from the [DYALOG]/Samples/Conga/TODServer directory) to
create a server object. The TODServer.RunText function enters a loop where it
waits for connections; this means that, to be able to experiment with using this
service without starting a second APL session, it should be started using the Spawn
operator (&) so that it runs in a separate thread:

]Load [DYALOG]Samples/Conga/TODServer/TODServer
TODServer.RunText & 13

Text Mode TOD Server started on port 13

For this to work on the Microsoft Windows operating system, the TOD service
must be disabled (this can be done by going to Control Panel > Programs and
Features > Turn Windows features on or off and unselecting the Simple TCPIP
services (i.e. echo, daytime etc) checkbox, then rebooting).

The right argument in this function call is the port number; if a TOD service is already
running on port 13, then an error message is returned and a different port must be
used for the new service.

A client object can now be created, data received and the client object closed:

DRC.Clt 'C1' 'localhost' 13 'Text'
0 C1

DRC.Wait 'C1'
0 C1 Block 10:09:03 12-10-2015

DRC.Close 'C1'
0

revision 20240129_350 19

Conga User Guide

The TOD server created by calling the TODServer.RunText function is not restricted
to only respond to Dyalog applications using Conga – it can be used by any program
that is written to use a TOD service.

The server can be stopped as follows:

TODServer.DONE←1
TOD Server terminated.

4.5 Command Mode
Section 4.3 and Section 4.4 used connections in Textmode, which are appropriate for
most web applications. Even when remote procedure calls are made over the
internet, with arguments and results containing arguments that are not simply text
strings, the parameters are usually encoded using SOAP/XML, which is a text-based
encoding.

The TOD server created by calling the TODServer.RunText function in Section 4.4
can be used by any program that is written to use a TOD service. It could be restricted
to only respond to Dyalog applications using Conga by converting it to use Command
mode – doing this means that it will return the time as a 7-element array in ⎕TS
format.

The TODServer.RunCommand function implements a TOD service running in
Commandmode. Unlike the Textmode TOD service, a server that is running in
Commandmode cannot initiate the transmission of data when the connection is
made, but can only respond to a request from a client. This means that the :Case
'Connect' statement does not have any associated code. However, code could be
added here so that the TOD server could (for example) record connections. The code
handling the :Case 'Receive' event does no processing on any content received
with the request, it merely returns the current timestamp irrespective of the content.

In Text/Rawmode, client and server can both initiate data transfer by calling the
DRC.Send function (see Section A.26) – there is no concept of a request/respond
protocol at the Conga level, although implementing an HTTP protocol over the
connection can add such a protocol at the application level. However, in Command
mode (and in BlkRawmode and BlkTextmode), Conga has an in-built protocol;
communication on a connection is synchronous and consists of discrete commands.
Each command comprises a request from the client followed by a response from the
server; the server cannot initiate an unrequested transfer of data. The request
message from the client and response message from the server are linked by an
identifier (this is not the case in other modes). This means that, although the

revision 20240129_350 20

Conga User Guide

DRC.Send function can be used to send data from a client in Commandmode, a
different function must be used to send data from a server in Commandmode – the
DRC.Respond function (see Section A.24). The server can also call the
DRC.Progress function (see Section A.19); this sends progress messages to the
client while the server is processing a command, allowing the client to show the user
a progress bar or other status information.

Ideally, the Commandmode TOD server should be started on a port other than port
13 so that it is not confused with a standard TOD server (if required, both the Text
and Command TOD servers could be run at the same time, in different threads):

TODServer.RunCommand & 913
Command Mode TOD Server started on port 913

A Commandmode Dyalog client of this TOD server can now be created and retrieve a
numeric timestamp from the server:

DRC.Clt 'C1' 'localhost' 913
0 C1

DRC.Send 'C1' ''
0 C1.Auto00000000

The first element of the argument to the DRC.Send function can be either a client
name or a connection name:

l if a client name is supplied (as in this example) then Conga generates a
connection name and returns it as result element [2] in the format
clientname.connectionname (in this example, C1.Auto00000000).

l if a connection name is supplied, then Conga returns it as result element [2].
DRC.Wait 'C1'

0 C1.Auto00000000 Receive 2015 10 19 9 36 48 845

Result element [4] is now a 7-element integer vector rather than a formatted
timestamp; this is more performant on an APL client, but means that the TOD server
is no longer usable by other TCP client programs that expect a Textmode TOD server.

revision 20240129_350 21

Conga User Guide

Unlike the Textmode TOD server, the Commandmode TOD server does not close the
connection after sending a timestamp. This means that a second timestamp can be
retrieved from the server (in this example the DRC.Wait function includes a
maximum waiting time of 5 seconds):

DRC.Send 'C1' ''
0 C1.Auto00000001

DRC.Wait 'C1' 5000
0 C1.Auto00000001 Receive 2015 10 19 9 37 28 581

4.6 Parallel Commands
Although the Commandmode protocol is synchronous, more than one command can
be active at the same time – it is not necessary to wait for the response to one
command before the next command is sent. In addition, multiple commands can be
started and the results retrieved in any order.

EXAMPLE

(In this example command names are specified, whereas in Section 4.5 the command
name was auto-generated)

DRC.Send 'C1.TS1' ''
0 C1.TS1

DRC.Send 'C1.TS2' ''
0 C1.TS2

DRC.Wait 'C1.TS2' 1000
0 C1.TS2 Receive 2015 10 19 9 38 7 957

DRC.Wait 'C1.TS1' 1000
0 C1.TS1 Receive 2015 10 19 9 37 57 965

The timestamps show that the TS1 command was executed before the TS2 command
even though the results were retrieved in the reverse order.

The Commandmode protocol allows multiple APL threads to work independently. A
request message from the client and the associated response message from the
server are linked by a command name; this means that any APL thread can wait for
the result of a command, as long as it knows the command name. Multiple APL
threads can share the same server connection; one APL thread can send a command
and then dispatch a new APL thread to wait for and process the result of that
command.

revision 20240129_350 22

Conga User Guide

Command names can be reused as soon as the result has been received (but not
before).

EXAMPLE

Using client C1 and the modified TOD server created in Section 4.5:

DRC.Send 'C1.TS1' ''
0 C1.TS1

DRC.Send 'C1.TS2' ''
0 C1.TS2

{⎕TID,DRC.Wait ⍵ 1000}&¨ 'C1.TS1' 'C1.TS2'
2 0 C1.TS1 Receive 2015 11 16 11 25 28 850
3 0 C1.TS2 Receive 2015 11 16 11 25 32 474

This shows the asynchronous execution of a dynamic function; each of the two
commands TS1 and TS2 calls the DRC.Wait function in a separate thread. Each
function call returns the thread number and the result. Calls to the DRC.Wait
function are thread switching points, which means that threads can be held while
other threads continue execution.

4.6.1 Multi-threading

Conga supports multi-threaded applications. The ability to have a program work as
both client and server simultaneously, without blocking other threads, has been an
integral part of its design. All calls to Conga are implemented as asynchronous calls to
an external library (Microsoft Windows DLL or UNIX/Linux Shared Library). Conga uses
multiple operating system threads to handle TCP communications; this is independent
of the interpreter. Each result is returned to the APL thread that is waiting for it.

When developing an application, it is important to ensure that there is an APL thread
waiting on each server object that has been created (otherwise requests will not be
serviced). Having more than one APL thread waiting on the same object is not
recommended – it can lead to unpredictable behaviour. For example:

Thread 1: DRC.Wait 'S1' 1000
Thread 2: DRC.Wait 'S1' 1000

could result in problems, whereas

Thread 1: DRC.Wait 'S1' 1000
Thread 2: DRC.Wait 'S2' 1000

is fine; this is determined by the application developer.

revision 20240129_350 23

Conga User Guide

If a thread sustains an untrapped error then, by default, its execution is
suspended and any other threads are paused; resuming execution of a
suspended function only restarts the suspended thread. If the Session appears
to lock while testing the multi-threading functionality, selecting the menu item
Threads > Resume all Threads reactivates any paused threads.

revision 20240129_350 24

Conga User Guide

5 Secure Connections

Conga supports secure connections using SSL/TLS protocols. Secure connections allow
client and server applications to:

l verify the identity of the partner that they are connected to.
l encrypt messages so that the contents cannot be deciphered by a third party,

even when using text or raw mode connections.
l ensure that messages have not been tampered with by a third party during

transmission.

SSL/TLS is a generic term for a set of related protocols used to add confidentiality and
authentication to communications channels such as sockets. TLS (Transport Layer
Security) is the successor to SSL (Secure Socket Layer) and is defined by the IETF and
described in RFC 2246. There are only minor differences between the two protocols,
so their names are often used interchangeably.

Recommended resources:
l http://technet.microsoft.com/en-us/library/cc784450(WS.10).aspx discusses

the history, differences, benefits, etc. of SSL/TLS
l http://developer.mozilla.org/en/docs/Introduction_to_Public-Key_

Cryptography provides an overview of the public key cryptography techniques
used in SSL/TLS; the sections on the SSL protocol and CA (certificate authority)
certificates are relevant for anyone who would like to make use of secure
communications.

l http://en.wikipedia.org/wiki/X.509 includes an introduction to how X.509
certificates and certificate authorities are used to establish trust.

To use SSL/TLS, Conga needs to be passed the necessary certificate and public key
files when client and server objects are created.

Once a secure connection has been established, the same functions/methods are
used to send and receive data (and with the same arguments) as when using a non
secure connection.

revision 20240129_350 25

Conga User Guide

http://technet.microsoft.com/en-us/library/cc784450(WS.10).aspx
http://developer.mozilla.org/en/docs/Introduction_to_Public-Key_Cryptography
http://developer.mozilla.org/en/docs/Introduction_to_Public-Key_Cryptography
http://en.wikipedia.org/wiki/X.509

5.1 CA Certificates
A certificate authority (CA) is a third party who is trusted by the parties at each end of
a secure communication. The CA certifies that the named issuer of a certificate is the
owner of the public key included within that certificate; the party at one end of a
secure communication can then verify the identity of the party at the other end
(known as the peer) using their certificate.

Verifying a CA's signature on a certificate requires having access to the CA's public
certificate (often called a root certificate). Conga can be used to secure many different
types of system, and can require multiple (and sometimes private) root certificates
from several CAs.

All public root certificates that are to be used with Conga should be located in a single
root certificate directory; the RootCertDir property (set using the DRC.SetProp
function) sets the full path to (and name of) this directory. The main root certificates
for the most widely-used CAs are supplied with Conga and are located in the
[DYALOG]/PublicCACerts directory. The following code can be used to set
RootCertDir to use these certificates:

DyalogDir←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
DRC.SetProp '.' 'RootCertDir' (DyalogDir,'/PublicCACerts')

0

Table 5-1 lists the download pages for root certificates for the CAs used to populate
the [DYALOG]/PublicCACerts directory. However, most CAs have additional
certificates available for download, some of which are application-specific; the latest
certificates can be downloaded from the CA's websites.

Authority Download Root Certificates From...

VeriSign,
Geotrust &
Thawte

http://www.verisign.com/support/roots.html

Comodo http://www.comodo.com/repository/

GoDaddy &
ValiCert https://certs.godaddy.com/Repository.go

Table 5-1: Root Certificates for the most widely-used CAs

revision 20240129_350 26

Conga User Guide

http://www.verisign.com/support/roots.html
http://www.comodo.com/repository/
https://certs.godaddy.com/Repository.go

Authority Download Root Certificates From...

Cybertrust http://cybertrust.omniroot.com/support/sureserver/rootcert_
ap.cfm

Entrust http://www.entrust.net/developer/index.cfm

CAcert http://www.cacert.org/index.php?id=3

GlobalSign https://www.globalsign.com/support/root-certificate/osroot.htm

IPS
Servidores

http://www.ips.es/Declaraciones/NuevasCAS/NuevasCAS.html
The root certificate is not included in [DYALOG]/PublicCACerts.

Table 5-1: Root Certificates for the most widely-used CAs (continued)

Conga recognises files with one of the extensions .cer, .pem or .der as certificates.
These files must contain data in either PEM or DER format. See Appendix B for more
information and instructions on how to create certificate files.

5.2 Client and Server Certificates
Client and server certificates are used to verify the identity of the machines at each
end of a secure connection (peers). Conga uses X.509 certificates to establish the
identity of the peer in a TLS/SSL connection. An X.509 certificate contains information
about the certificate subject and the certificate issuer (the CA that issued the
certificate), including details of the public key algorithm and the issuer's digital
signature.

Dyalog includes a set of test certificates that can be used to test SSL support. The test
certificates are found in [DYALOG]/TestCertificates, which has three subfolders called
ca, client and server. These test certificates can be used for testing your own code,
but must not be used in production code. The provided certificates are:

l TestCertificates/ca/ca-key.pem
The private key for the test CA. Used to sign the client/server and CA
certificates. As this is distributed with Conga, no certificate that relies on this
can be considered truly secure.

l TestCertificates/ca/ca-cert.pem
The public certificate for the test CA. Used to authenticate the client/server
certificates.

revision 20240129_350 27

Conga User Guide

http://cybertrust.omniroot.com/support/sureserver/rootcert_ap.cfm
http://cybertrust.omniroot.com/support/sureserver/rootcert_ap.cfm
http://www.entrust.net/developer/index.cfm
http://www.cacert.org/index.php?id=3
https://www.globalsign.com/support/root-certificate/osroot.htm
http://www.ips.es/Declaraciones/NuevasCAS/NuevasCAS.html

l TestCertificates/client/John Doe-cert.pem and John Doe-key.pem
The certificate/key pair used for sample clients (alternatively, the Jane Doe-
cert pair can be used).

l TestCertificates/server/localhost-cert.pem and localhost-key.pem
The certificate/key pair used for sample servers.

5.2.1 Certificate Stores
This only applies when running on the Microsoft Windows operating system
and is limited to client-side certificates.

Certificates can be stored in common repository known as a certificate store. Conga
supports the ability to read certificates from the Microsoft certificate store.

5.2.2 Revocation Lists

Conga does not support the use of Certificate Revocation Lists. However, this
functionality could be added in a future version if required.

5.3 Creating a Secure Client
Usually, a client should be defined as secure when it is created. However, a
non-secure client can be upgraded to a secure client by setting its StartTLS
property – see Section 5.3.1.

Conga creates secure clients by passing certificate and key information to the
DRC.Clt function – this should be done through the DRC.X509Cert class.

EXAMPLE – ASSUMES SECURE SERVER ALREADY ESTABLISHED ON PORT 713
DyalogDir←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
TestCerts←DyalogDir,'/TestCertificates/'
Path←TestCerts,'Client/'
cert←⊃DRC.ReadCertFromFile Path,'John Doe-cert.pem'
cert.KeyOrigin←'DER' (Path,'John Doe-key.pem')
certs←('X509' cert)('SSLValidation' 16)
DRC.Clt 'C1' 'localhost' 713 'Text', certs

0 C1

In this example, ReadCertFromFile reads the certificate called client-cert.pem and
records all of its information in a new instance of the X509Cert class. The next line
specifies the location of the John Doe-key.pem file, which contains the private key.

revision 20240129_350 28

Conga User Guide

The sixth line creates a variable comprising the parameters required for the creation
of the secure client and the last line includes this information when creating the
secure client.

Alternatively, the locations of the certificate and key files can be explicitly specified:

certs←⊂('PublicCertFile' ('DER' (Path,
'John Doe-cert.pem')))

certs,←⊂('PrivateKeyFile' ('DER' (Path,
'John Doe-cert.pem')))

certs,←⊂('SSLValidation' 16)
DRC.Clt 'C1' 'localhost' 713 'Text', certs

0 C1

where PublicCertFile and PrivateKeyFile identify the files containing the
public certificate and private key respectively.

The SSLValidation parameter that is included when creating a secure client
indicates the TLS flags that control the certificate checking process (see Appendix C
for a complete list of TLS flag values). A typical flag value for a client connection is 16
(accept the server certificate even if its hostname does not match the one it was
trying to connect to).

A certificate is not mandatory when creating a secure client; many secure servers
accept connections from clients without certificates (known as anonymous
connections). In this situation, although the server cannot verify the identity of the
client, the connection is still encrypted and safe from tampering. Most commercial
web sites use anonymous connections as they mean that sensitive data is protected
when transmitted over the internet but customers are not required to have a digital
signature. To enable an anonymous connection, an empty certificate can be created
as follows:

'X509' (⎕NEW DRC.X509Cert)
X509 #.[X509Cert]

revision 20240129_350 29

Conga User Guide

EXAMPLE

args←'C1' 'www.dyalog.com' 443 'Text' 100000
args,←⊂('X509' (⎕NEW DRC.X509Cert))
DRC.Clt args

0 C1

This is successful even though the RootCertDir property has not been
explicitly set because, on many platforms, Conga will use the operating
system’s CA certificate collection.

If a secure server's RootCertDir parameter has not been defined to point to
a valid CA certificate, then a client will be unable to make a secure connection
to that server.

EXAMPLE

args←'C1' 'ssltest.dyalog.com' 713 'Text' 100000
args,←⊂('X509' (⎕NEW DRC.X509Cert))
DRC.Clt args

1202 ERR_INVALID_PEER_CERTIFICATE /* The peers
certificate is not valid */ 66

Without access to a valid CA certificate, validation fails. However, the connection is
successful if validation is disabled; this means that, when trying to determine why a
connection is failing, it can be useful to set the value of the SSLValidation
parameter to 32 (accept the server certificate without validating it):

args←'C1' 'ssltest.dyalog.com' 713 'Text' 100000
args,←⊂('X509' (⎕NEW DRC.X509Cert))
DRC.SetProp '.' 'RootCertDir' 'path/TestCertificates/ca/'

0
DRC.Clt args,⊂'SSLValidation' 32

0 C1

Having connected without validation, the certificate information can be retrieved and
a decision made whether to proceed with the conversation with this server.

EXAMPLE

rc cert←DRC.GetProp 'C1' 'PeerCert'
,[1.5]1⊃cert.Formatted.(ValidFrom ValidTo Issuer Subject)

Wed Apr 01 15:28:02 2015
Fri May 04 17:32:04 2018

revision 20240129_350 30

Conga User Guide

C=BE,O=GlobalSign nv-sa,CN=GlobalSign Organization Validation CA
- SHA256 - G2

C=GB,ST=Hampshire,L=Alton,OU=IT,O=Dyalog Limited,CN=*.dyalog.com

Once a secure server and client have been linked, operations are exactly the same as
for a non-secure server and client.

5.3.1 Upgrading to a Secure Client

A non-secure client can be upgraded to be secure (as long as the host allows such
upgrades) by setting the client's StartTLS property. To use StartTLS on a client
you need to:

l supply the public certificate data from your certificate. This is most easily
accomplished by creating an X509Cert instance and using its AsArgmethod.

l provide the address of the host in the Address parameter.
l optionally, provide any appropriate SSLValidation settings.

EXAMPLE

cert←⎕NEW DRC.X509Cert

⍝ create an non-secure connection
(rc clt)←DRC.Clt '' 'some-address' 5000 'text'

⍝ upgrade to a secure connection
rc←DRC.SetProp clt 'StartTLS' (cert.AsArg,('SSLValidation'

32)('Address' 'some-address'))

5.4 Creating a Secure Server
Usually, a server should be defined as secure when it is created. However, a
non-secure client connection can be upgraded to be secure by setting its
StartTLS property – see Section 5.4.1.

Secure servers are created in the same way as secure clients (see Section 5.3) with the
additional rule that a secure server must have a certificate.

EXAMPLE

DRC.SetProp '.' 'RootCertDir' 'path\TestCertificates\ca\'
0

cert←⊃DRC.ReadCertFromFile 'path\TestCertificates\
server\server-cert.pem'

revision 20240129_350 31

Conga User Guide

cert.KeyOrigin←'DER' 'path\TestCertificates\server\x
xserver-key.pem'

certs←('X509' cert)('SSLValidation' 64)
DRC.Srv 'S1' '' 713 'Text',certs

0 S1

When a client is connected to a secure server, the server can request the client's
certificate information by calling the DRC.GetProp function on the connection object
(see Section A.15). However, it is not mandatory for a client to have a certificate and a
server can only request information about a client's certificate if the SSLValidation
parameter that is included when creating a secure server indicates (see Section A.29)
includes one of the following TLS flags (see Appendix C for a complete list of TLS flag
values):

l RequestClientCertificate (64) – including this flag means that connections are
permitted from clients even if they do not have a certificate; if a client does
have a certificate then information on that certificate is passed to the server.

l RequireClientCertificate (128) – including this flag means that connections are
only permitted from clients that have a certificate.

If no client certificate is requested, or no certificate exists, then certificate
information will have zero rows when queried.

The validation of client certificates requires access to root certificates; before
requesting any client certificate information the DRC.SetProp function (see
Section A.28) must be called on the root object to identify the folder containing these
certificates. For example:

DRC.SetProp '.' 'RootCertDir' 'path\TestCertificates\ca'

Connections that are rejected due to certificate validation failure do not
generate events on the server, so no application code is required to handle this
situation.

5.4.1 Upgrading to a Secure Connection

A non-secure connection can be upgraded to be secure by setting the connection's
StartTLS property. To use StartTLS on a server connection you need to:

l supply the public certificate data from a valid certificate for the server. This is
most easily accomplished by reading in a certificate as an X509Cert instance
and using its AsArgmethod.

l optionally, provide any appropriate SSLValidation settings.

revision 20240129_350 32

Conga User Guide

EXAMPLE

⍝ read the server test certificate
cert←DRC.ReadCertFromFile 'path\TestCertificates\server\

localhost-cert.pem'

⍝ create the server
(rc srv)←DRC.Srv '' '' 5000 'text'

⍝ wait for connection (assume one arrives before time out)
(err con evt dat)←DRC.Wait srv 1000

⍝ upgrade the connection
DRC.SetProp con 'StartTLS' (cert.AsArg,('SSLValidation'

64))

5.5 Using the DRC.X509Cert Class
Conga includes a class to encapsulate certificate handling – DRC.X509Cert. For a
complete description of the DRC.X509Cert class, see Section A.33.

Certificate information is returned as an X509Cert object. This can:
l be used to validate a peer certificate in combination with flags such as

CertAcceptWithoutValidating (see Table C-1).
l enable a server to confirm the identity of a client without requiring a login.

The specific information can vary, but usually includes the certificate issuer, subject,
public key algorithm, certificate format version, serial number and valid from/to
dates. If no certificate exists or, in the case of a server object, no certificate
information has been requested (see Table C-1), then the X509Cert object is an
empty vector.

To read one or more certificates from a file:

dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
path←dyalog,'/TestCertificates/'
file←path,'client/Jane Doe-cert.pem'
⍴myCert←DRC.ReadCertFromFile file

1

As only a single certificate is present, the outermost layer of nesting can be removed:

⊢myCert←⊃myCert
#.[LIB].[X509Cert]

revision 20240129_350 33

Conga User Guide

myCert.⎕NL ¯2 ⍝ examine its properties
Cert CertOrigin Elements Extended Formatted KeyOrigin LDRC
ParentCert UseMSStoreAPI

Elements, Extended and Formatted contain specific information about the
certificate. Elements contains the information in a basic format while Formatted
and Extended have the same elements in a more human-readable format
(Extendedmay, in some instances, contain more information). For example:

myCert.Elements.⎕NL ¯2
AlgorithmID AlgorithmParams Description EnhancedKeyUsage

Extensions FriendlyName Issuer IssuerID Key KeyContainer
KeyHex KeyID KeyLength KeyParams KeyProvider KeyProviderType
SerialNo Subject SubjectID ValidFrom ValidTo Version

myCert.Elements.(ValidFrom ValidTo)
2018 5 17 3 33 24 0 2028 5 14 3 33 24 0

myCert.Formatted.(ValidFrom ValidTo)
Thu May 17 03:33:24 2018
Sun May 14 03:33:24 2028

myCert.Extended.(ValidFrom ValidTo)
Thu May 17 03:33:24 2018
Sun May 14 03:33:24 2028

5.5.1 Certificate Chains

A certificate chain (also known as a certification path) is a hierarchy of certificates
used for authentication. The first entity in the chain is the certificate for a specified
Conga object. Progressing through the chain, each certificate is signed by the owner
of the next entity in the chain (that is, the Issuer of the lower certificate is the
Subject for the certificate above it in the chain), as shown in Figure 5-1. The final
entity in the chain is a root CA certificate.

Figure 5-1: Certificate chain

revision 20240129_350 34

Conga User Guide

Continuing the example in Section 5.5:
myCert.Chain

#.[LIB].[X509Cert] #.[LIB].[X509Cert]

This is the certificate chain for the test client certificate; it comprises two certificates,
the client certificate and the test CA certificate. This can be verified by inspecting the
Issuer for the lower certificate in the chain and the Subject for the higher
certificate in the chain – they should be the same:

]DISPLAY myCert.Chain.Formatted.Subject
┌→──┐
│ ┌→─────────────┐ ┌→───────────────────┐ │
│ │CN=Test client│ │O=Test CA,CN=Test CA│ │
│ └──────────────┘ └────────────────────┘ │
└∊──┘

]DISPLAY myCert.Chain.Formatted.Issuer
┌→──┐
│ ┌→───────────────────┐ ┌→───────────────────┐ │
│ │O=Test CA,CN=Test CA│ │O=Test CA,CN=Test CA│ │
│ └────────────────────┘ └────────────────────┘ │
└∊──┘

The lowest certificate in the chain (in this case, the client certificate) is always shown
on the left, and the highest certificate in the chain (in this case, the test CA certificate)
is always shown on the far right, with any intermediate certificates in the appropriate
location between them. In this example, the Issuer for the lower certificate in the
chain and the Subject for the higher certificate in the chain can be seen to be the
same, confirming the authenticity of the client certificate.

In addition, the test CA certificate has the same value for its Issuer as it does for its
Subject; this certificate is, therefore, self-signed.

revision 20240129_350 35

Conga User Guide

6 HTTP Mode

Hypertext Transfer Protocol (HTTP) is the foundation for communications on the
World Wide Web. Prior to Conga v.3.0, applications that wanted to use HTTP would
be required to parse and compose HTTP messages in the application. Conga v3.0
introduced HTTPmode which can do most of the processing of HTTP messages
internally, passing the parsed elements of the HTTP message to your application.
HTTPmode can be enabled for both clients and servers. Doing so means that Conga
will parse messages that are received using the HTTP specification.

HTTPmode is enabled by specifying 'http' as the mode parameter when the client
or server is created. For example:

client ← DRC.Clt 'C1' 'www'dyalog.com' 80 'http'
server ← DRC.Srv 'S1' 'localhost' 8080 'http'

HTTPmode greatly simplifies the task of building web-enabled server applications, for
example, web servers (which are typically accessed using web browsers) or web
services that implement a standard medium for client and server applications to
communicate. A Conga-based HTTP-mode client can be used to retrieve data from
web services.

Several of Dyalog's utilities and frameworks use HTTP, including MiServer, JSONServer
and HttpCommand.

This document describes how Conga has implemented HTTPmode. It is not a
comprehensive treatment of HTTP.

6.1 Receiving HTTP Messages
Whether acting as a client or server, the process of receiving HTTP messages is the
same and follows one of three patterns:

l Header only
The entire message is contained in the message header. This is typical with the

revision 20240129_350 36

Conga User Guide

HTTP GET method – all information is passed in the HTTP header and there is
no body. This is indicated by a 0 (zero) value in the Content-Length HTTP
header field.

l Header then Body
The message is split between the HTTP header block and the HTTP body block.
The body contains the data or payload for the message. The size of the body is
indicated by the Content-Length header field.

l Header, then one or more Chunks, then a Trailer
When the payload is large, or is being generated spontaneously, the payload
can be split and transmitted in several chunks. A trailer, possibly empty, is sent
after the last chunk. Chunked mode is indicated by the Transfer-Encoding
header field having the value "chunked" and there being no Content-Length
header field.

6.2 HTTP Mode Events
Four events are associated with Conga's HTTP mode:

l HTTPHeader (see Section 6.2.1)
l HTTPBody (see Section 6.2.2)
l HTTPChunk (see Section 6.2.3)
l HTTPTrailer (see Section 6.2.4)

When any of these events occur, the format of the event's data element depends on
whether Conga has been instructed to decode the data. This is determined by the
Options parameter.

EXAMPLE

DRC.Obj '' 'localhost' 8080 'http' ('Options'
DRC.Options.DecodeHttp)

where Obj is either Clt or Srv.

For more information on the Options parameter, see Section 9.8.

For backwards compatibility, whether Conga has been instructed to decode the
data can also be set using the deprecated server/client/connection object's
DecodeBuffers property. This can take the values of 0 (Conga returns a
simple character vector that needs to be parsed outside Conga) or 15 (Conga
return an array of elements that are meaningful to the particular event and
more convenient for processing). For example:

DRC.SetProp obj 'DecodeBuffers' 15

where obj is a server, connection or client object.

revision 20240129_350 37

Conga User Guide

6.2.1 Event: HTTPHeader

The HTTPHeader event is always the first event when receiving an HTTP request or
response. The data received with the HTTPHeader event depends on whether the
object is a client or server. In both scenarios the header values can require additional
processing, for example, the value of the header might be Base64-encoded.

When a server receives an HTTP request from a client, the HTTPHeader data
contains:

[1] – the HTTP method

[2] – the requested resource (URL)

[3] – the HTTP version

[4] – a 2-column matrix of header name/value pairs

EXAMPLE

┌───┬─┬────────┬───────────────────────────────┐
│GET│/│HTTP/1.1│┌───────────────┬─────────────┐│
│ │ │ ││Host │localhost ││
│ │ │ │├───────────────┼─────────────┤│
│ │ │ ││User-Agent │Dyalog/Conga ││
│ │ │ │├───────────────┼─────────────┤│
│ │ │ ││Accept │*/* ││
│ │ │ │├───────────────┼─────────────┤│
│ │ │ ││Accept-Encoding│gzip, deflate││
│ │ │ │└───────────────┴─────────────┘│
└───┴─┴────────┴───────────────────────────────┘

When a client receives an HTTP response from a server, the HTTPHeader data
contains:

[1] – the HTTP version

[2] – the HTTP status code

[3] – the HTTP status message

[4] – a 2-column matrix of header name/value pairs

revision 20240129_350 38

Conga User Guide

EXAMPLE

┌────────┬───┬──┬──┐
│HTTP/1.1│200│OK│┌────────────────┬───────────────────────┐│
│ │ │ ││Content-Type │text/html;charset=utf-8││
│ │ │ │├────────────────┼───────────────────────┤│
│ │ │ ││Content-Encoding│gzip ││
│ │ │ │├────────────────┼───────────────────────┤│
│ │ │ ││Server │MiServer/3.1 ││
│ │ │ │├────────────────┼───────────────────────┤│
│ │ │ ││Content-Length │876 ││
│ │ │ │└────────────────┴───────────────────────┘│
└────────┴───┴──┴──┘

6.2.2 Event: HTTPBody

The HTTPBody event occurs when there is a payload for the HTTP message that has
not been broken into chunks by specifying a Transfer-Encoding header value of
'chunked'. The data received is a character vector containing the entire payload
(body) of the message. Depending on the value of the Content-Type header, the data
might require additional parsing and processing.

6.2.3 Event: HTTPChunk

The HTTPChunk event occurs when the message has a Transfer-Encoding header with
a value of 'chunked'. Chunked transfer encoding splits the payload for the message
into chunks. Each chunk can have chunk extensions, which are name/value pairs.
Chunk extensions can be used to convey information like progress, a message digest
or digital signature. The data for the HTTPChunk event contains:

[1] the data for the chunk

[2] a 2-column matrix of chunk extension name/value pairs

6.2.4 Event: HTTPTrailer

Like the HTTPChunk event, the HTTPTrailer event occurs when the message has a
Transfer-Encoding header with a value of 'chunked'. It is effectively a 0-length chunk,
and signals the end of the message. However, instead of chunk extensions, the
HTTPTrailer event's data comprises 0 or more headers (name/value pairs) – these
should be treated as additional headers similar to those received with the
HTTPHeader event. Normally, such header fields would be sent in the message's
header; however, it may be more efficient to determine them after processing the

revision 20240129_350 39

Conga User Guide

entire message. In this situation, it is useful to send those headers in the trailer. The
data for the HTTPTrailer event contains a 2-column matrix (possibly with 0 rows) of
any header name/value pairs.

6.2.5 Event: HTTPFail

The HTTPFail event occurs if Conga cannot parse the data received for an
HTTPHeader, HTTPChunk or HTTPTrailer event. In this situation, the unparsable
data is returned as a character vector in the data element of the event.

6.2.6 Event: HTTPError

The HTTPError event occurs when the connection is closed during the receipt of an
HTTP header, leaving the header portion of the HTTP message incomplete. In this
situation, the received data is returned in the data element of the event.

6.3 Limiting HTTP Message Size
It is a good practice to set a limit for the maximum message size that an HTTP server
or client can process. One technique used in denial-of-service (DOS) attacks is to send
very large messages with the intent of crashing or crippling a server; limiting the
message size can help mitigate these attacks.

By default, an HTTP server or client's BufferSize parameter is only used to check
the length of data of the HTTPHeader event. If the length exceeds BufferSize,
then error 1135 is generated and the connection is closed. No length checking is done
on subsequent HTTPBody, HTTPChunk, or HTTPTrailer events.

There are two ways to impose length checking on all HTTP events. Both of these
enforce length checking by:

l checking the value of the content-length header, if it exists, in the
HTTPHeader event's headers.

l checking the length of the data in the HTTPHeader, HTTPBody, HTTPChunk,
and HTTPTrailer events.

The first of these techniques can be achieved by setting the DOSLimit property on
the root object. DOSLimit is independent of BufferSize. For example:

DRC.SetProp '.' 'DOSLimit' 100000

revision 20240129_350 40

Conga User Guide

The second of these techniques can be achieved using
DRC.Options.EnableBufferSizeHttp on the server or client (see Section 9.8).
This causes a BufferSize check on all HTTP event data. For example:

DRC.Srv 'S1' 'localhost' 8080 'http' 10000 ('Options'
DRC.Options.(DecodeHttp+EnableBufferSizeHttp))

If both DOSLimit and BufferSize are set, then the smaller value applies.
Dyalog Ltd recommends using a modest BufferSize and not setting
EnableBufferSizeHttp to ensure that abnormally large headers are not
processed, then setting an appropriate DOSLimit to accommodate the
expected size messages.

If the event data length exceeds BufferSize, then error 1135 is returned and the
connection is closed. If the event data length exceeds DOSLimit, then error 1146 is
returned and the connection is closed.

6.4 Sending HTTP Messages
To send an HTTP message, do one of the following:

l Compose a properly formatted HTTP message as a character vector and pass it
to the DRC.Send function.

l Pass the DRC.Send function an array of up to 5 elements.

If passing an array of up to 5 elements to the DRC.Send function, the content of
these elements depends on whether the message is a request or a response.

When sending a request the elements are:

[1] – HTTP method (for example, 'GET' or 'POST')

[2] – URL of the requested resource

[3] – HTTP version (for example, 'HTTP/1.1')

[4] – 2-column matrix of head name/value pairs

[5] – Either a character vector representing the message body or a 2 or 3-element
array of ('' 'filename' ['gzip|deflate']) where filename is the name of a
file to send (without having to first read it into the workspace) and gzip|deflate
indicates the acceptable optional compression schemes that can be applied when
sending the file.

revision 20240129_350 41

Conga User Guide

When sending a response the elements are:

[1] – HTTP version (for example, 'HTTP/1.1')

[2] – HTTP status code (for example, '200')

[3] – HTTP status message (for example, 'OK')

[4] – 2-column matrix of head name/value pairs

[5] – Either a character vector representing the message body or a 2 or 3-element
array of ('' 'filename' ['gzip|deflate']) where filename is the name of a
file to send (without having to first read it into the workspace) and gzip|deflate is
the compression scheme applied when sending the file – this must be one that the
request specified as being acceptable in the accept-encoding header.

6.5 WebSocket Protocol
WebSocket protocol provides full-duplex communication channels over a single TCP
connection. When an established HTTP connection is upgraded to a bi-directional
WebSocket connection, both client and server can transmit data at any time rather
than being restrained by the normal cycle of the client making a request followed by a
server response. Conga client and server objects both support WebSockets.

6.5.1 Client-side WebSocket Upgrade

Requests to upgrade an existing HTTP connection to use the WebSocket protocol are
always initiated by the client. Before initiating an upgrade, the client needs to know
whether to automatically accept a positive response to an upgrade request from the
server. This is achieved either by setting the value of the WSFeatures property
(deprecated but retained for backwards compatibility) or by specifying the
WSAutoUpgrade option in the client's Options parameter.

Dyalog Ltd recommends allowing automatic upgrades unless you have a good
understanding of the WebSocket protocol.

revision 20240129_350 42

Conga User Guide

EXAMPLE

There are three ways in which the client can be configured to automatically accept
positive WebSocket upgrade responses from the server:

⍝ Recommended approach
DRC.Clt 'C1' 'localhost' 8080 'http' ('Options'

DRC.Options.WSAutoUpgrade)

⍝ Alternative approach (possibility of race conditions)
DRC.Clt 'C1' 'localhost' 8080 'http'
DRC.SetProp 'C1' 'Options' DRC.Options.WSAutoUpgrade

⍝ Deprecated approach but retained for backwards compatibility
DRC.Clt 'C1' 'localhost' 8080 'http'
DRC.SetProp 'C1' 'WSFeatures' 1

The subsequent upgrade process depends on the automatic upgrade setting;
Table 6-1 summarises the steps this process follows.

revision 20240129_350 43

Conga User Guide

Automatic Upgrade on Server
No Yes

Automatic
Upgrade on

Client

No

1. Client sets the WSUpgrade
property

2. Server receives a
WSUpgradeReq event

3. Server inspects headers
and, if acceptable, sets the
WSAccept property

4. Client receives a
WSResponse event

5. Client inspects headers
(and optional additional
data) and, if acceptable,
sets the WSAccept
property

1. Client sets the WSUpgrade
property

2. Server receives (and
automatically accepts) a
WSUpgrade event

3. Client receives a
WSResponse event

4. Client inspects headers
(and optional additional
data) and, if acceptable,
sets the WSAccept
property

Yes

1. Client sets the WSUpgrade
property

2. Server receives a
WSUpgradeReq event

3. Server inspects headers
and, if acceptable, sets the
WSAccept property

4. Client receives a
WSUpgrade event

1. Client sets the WSUpgrade
property

2. Server receives (and
automatically accepts) a
WSUpgrade event

3. Client receives a
WSUpgrade event

Table 6-1: Effect of setting Automatic Upgrade on the Server/Client

EXAMPLE

This example creates a client object and upgrades it to use the WebSocket protocol.
The WSAutoUpgrade property on this example client object is not set (responses
must be manually validated/confirmed)

Create an HTTP client:

DRC.Clt 'C1' 'localhost' 8080 'http' ('Options'
DRC.Options.DecodeHttp)

0 C1

revision 20240129_350 44

Conga User Guide

Initiate the upgrade process by setting the WSUpgrade property. This property's value
is a 3-element vector specifying:

[1] – the path that follows the hostname in the URL – setting it to /means use the
default page/resource for the host.

[2] – the hostname (usually that of the server that the client is connected to).

The server needs to know what page that the WebSocket is going to be
associated with. A complete URL specification includes a protocol (ws:// or
wss://), host and page in a single string, for example,
ws://demos.kaazing.com/echo – when breaking it down, the protocol is
implicit (based on whether the client connection was opened as a secure
connection), the host is demos.kaazing.com and the page is /echo.

[3] – any additional header information that the server being connecting to might
need to determine how it handles the connection.

DRC.SetProp 'C1' 'WSUpgrade' ('/' 'localhost'
'prop:

value')
0

Call the DRC.Wait function. If the server accepts the request then the client will
receive a WSResponse event including data containing status and header information
from the server (this is a means of passing additional information between the client
and server and is part of the WebSocket protocol – the specific information is
determined by the developer, for example, a unique hash code for security):

⎕←res←DRC.Wait 'C1'
0 C1 WSResponse HTTP/1.1 101 Switching Protocols

Upgrade: websocket
Connection: Upgrade
Sec-Websocket-Accept:

G/cEt4HtsYEnP0MnSVkKRk459

The WSResponse event was received because WSFeatures was set to 0; if
WSFeatures had been set to 1, then the response would have been a WSUpgrade
event:

0 C1 WSUpgrade 0

revision 20240129_350 45

Conga User Guide

As auto-accept is not enabled, the headers must be validated manually. If they are
acceptable then the WSAccept property should be set. You are required to confirm
the headers that you want to accept as the first element. The second element is not
used but is required for symmetry with the server call (see Section 6.5.2).

If the headers are not acceptable then an HTTP response with a 4XX status
code can be sent (see https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status) or the connection can be closed.

DRC.SetProp 'C1' 'WSAccept' ((4⊃res)'')
0

The next call to the DRC.Wait function should return a WSResponse event, after
which the socket can be used as a WebSocket:

DRC.Wait 'C1'
0 C1 WSResponse HTTP/1.1 101 Switching Protocols

Upgrade: websocket
Connection: Upgrade
Sec-Websocket-Accept:

G/cEt4HtsYEnP0MnSVkKRk459

6.5.2 Server-side WebSocket Upgrade

When a client requests an upgrade to use the WebSocket protocol, the server can
automatically accept the request (Dyalog Ltd recommends allowing automatic
upgrades unless you have a good understanding of the WebSocket protocol). This is
achieved either by setting the value of the WSFeatures property (deprecated but
retained for backwards compatibility) or by specifying the WSAutoUpgrade option in
the server's Options parameter. If requests to upgrade to use the WebSocket
protocol are automatically accepted, then the server will receive a WSUpgrade event
when such an upgrade is requested by a client; otherwise the request will generate a
WSUpgradeReq event from a call to the DRC.Wait function.

EXAMPLE

⎕←res←DRC.Wait 'S1'
0 S1.CON00000000 WSUpgradeReq GET / HTTP/1.1

Host: localhost
Upgrade: websocket
Connection: Upgrade
some-setting: value
Sec-WebSocket-Version: 13
Sec-WebSocket-Key:KSO+hOFs1q5

SkEnx8bvp6w==

revision 20240129_350 46

Conga User Guide

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Any information that needs to be sent to the client comprises HTTP header
properties; each key-value pair must be CRLF-terminated. The format of the messages
is the same for both a WSUpgrade event and a WSUpgradeReq event. If a
WSUpgrade event is received then element [4] is for information purposes only and
the upgrade has been performed. If a WSUpgradeReq event is received then you
need to follow a similar pattern as for the client-side upgrade (see Section 6.5.1),
either closing the connection if the request is denied or responding with a
confirmation of the received headers plus any information that need to be sent to the
client:

DRC.SetProp 'S1.CON00000000' 'WSAccept' ((4⊃res)
('server-says: hello',CRLF))

0

The socket is considered open and the server should be able to transmit data, even
before the client has received a WSResponse event (if it is a Conga client or the
equivalent in JavaScript or some other programming language). However, as
confirmation that the WebSocket is operational, it might be prudent to wait for the
client to initiate communications.

6.5.3 Transmitting WebSocket Data

Once an HTTP connection has been upgraded to a WebSocket, the DRC.Send
function can be used to transmit data. This data can be sent in one or more
fragments.

The argument to the DRC.Send function must be a 2- or 3-element vector, where:

[1] is a character or integer vector of the data to be transmitted

[2] is a Boolean that declares whether this is the final fragment in a sequence:
l 0 indicates that this is not the final fragment in a sequence
l 1 indicates that this is the final (or only) fragment in a sequence

[3] (optional) specifies the "operation code" (if an operation code is not specified
then it is inferred from the data). Possible values are:

l 1 for Text (data must be character and will be converted to UTF-8)
l 2 for Binary (values between -128 and +255)
l 0 for a continuation (the data must have the same type as your earlier

transmission)

revision 20240129_350 47

Conga User Guide

When sending data:
l Binary data can be sent as single-byte (signed) integer (⎕DR 83) in the range -

128 to 127 or in the range 0 to 255, which could be single-byte or double-byte
(⎕DR 83 or ⎕DR 163). Data in the range -128 to 127 is mapped to hexadecimal
values 80-FF (128 to 255).

l Single-byte character data (⎕DR 80 or ⎕DR 82) can be sent as binary by
specifying an operation code of 2.

EXAMPLES

DRC.Send 'C1' ('Hello there' 1 1)
0

⍝ Send 'Hello there' in 2 fragments
DRC.Send 'C1' ('Hello ' 0 1)

0
DRC.Send 'C1' ('there' 1 0) ⍝ FIN flag set to 1

0

6.5.4 Receiving WebSocket Data

Incoming data is returned by the DRC.Wait function in the form of a WSReceive
event; this comprises the same data elements as the argument to the DRC.Send
function used to transmit the data (see Section 6.5.3).

A FIN flag of 0 indicates that the incoming data is split into multiple fragments; an
application should buffer or concatenate the fragments until receiving a FIN flag of 1
(for an explanation of FIN flags, see Section 6.5.3).

6.5.5 Secure WebSockets

To use secure WebSockets, the client or server needs to be established using secure
connections (see Chapter 5).

EXAMPLE

This example demonstrates using secure WebSockets with a publicly-visible
WebSocket-echo server.

⍝ Create an empty certificate
cert←⎕NEW DRC.X509Cert ⍬

⍝ Connect to the server (enabling automatic upgrade)
DRC.Clt 'c1' 'echo.websocket.org' 80 'http' ('X509' cert)

('Options' DRC.Options.WSAutoUpgrade)

revision 20240129_350 48

Conga User Guide

┌─┬──┐
│0│c1│
└─┴──┘

⍝ Request the upgrade
DRC.SetProp 'c1' 'WSUpgrade' ('/' 'echo.websocket.org' '')

0

⍝ Get the response
DRC.Wait 'c1'

┌─┬──┬─────────┬───┐
│0│c1│WSUpgrade│HTTP/1.1 101 Web Socket Protocol Handshake │
│ │ │ │ │
│ │ │ │Connection: Upgrade │
│ │ │ │ │
│ │ │ │Date: Mon, 10 Jun 2019 04:12:15 GMT │
│ │ │ │ │
│ │ │ │Sec-WebSocket-Accept: iY2q6p0pJDCyWJeWcN8wJCfM=│
│ │ │ │ │
│ │ │ │Server: Kaazing Gateway │
│ │ │ │ │
│ │ │ │Upgrade: websocket │
└─┴──┴─────────┴───┘

⍝ Send a message...
DRC.Send 'c1' ('hello' 1)

┌─┬───────────────┐
│0│c1.Auto00000000│
└─┴───────────────┘

⍝ ...which is simply echoed back
DRC.Wait 'c1'

┌─┬──┬─────────┬───────────┐
│0│c1│WSReceive│┌─────┬─┬─┐│
│ │ │ ││hello│1│1││
│ │ │ │└─────┴─┴─┘│
└─┴──┴─────────┴───────────┘

⍝ Close the connection
DRC.Close 'c1'

0

revision 20240129_350 49

Conga User Guide

7 The Conga Workspace

Table 7-1 summarises the contents of the conga workspace.

Name Description

DRC

Deprecated namespace supplied for backwards compatibility with
existing applications that copy this from the conga workspace. Contains
the Conga interface functions and methods – these are detailed fully in
Appendix A.

Conga
Namespace containing the Conga interface functions and methods –
these are detailed fully in Appendix A.

Table 7-1: Contents of the conga workspace

revision 20240129_350 50

Conga User Guide

8 Utilities and Samples

8.1 Utilities
Conga utilities are located in [DYALOG]/Library/Conga, which includes the following:

l FTPClient – a class that implements an FTP client and is used to send and
retrieve files with FTP servers.

l HttpCommand – a general-purpose HTTP client that can be used to (for
example) retrieve data from the web, communicate with web services and
read web pages (HttpCommand.Documentation will display the
documentation relating to HttpCommand).

l InitConga – a utility that helps a user to safely initialise Conga in an
environment where other components might also be using Conga.

Each of these utilities can be loaded into your workspace using the]Load user
command.

EXAMPLE

]Load HttpCommand

The most recently-updated versions of these Conga utilities are in Dyalog's GitHub
repository at https://github.com/Dyalog/library-conga; documentation for each of
these utilities is in Dyalog's GitHub repository at https://github.com/Dyalog/library-
conga/tree/master/Documentation.

8.2 Samples
Conga samples are located in [DYALOG]/Samples/Conga, which includes the
following sub-directories:

l CertTool – contains the CertTool namespace, which demonstrates how the
GnuTLS certTool can be used to generate self-signed certificates.

revision 20240129_350 51

Conga User Guide

https://github.com/Dyalog/library-conga
https://github.com/Dyalog/library-conga/tree/master/Documentation
https://github.com/Dyalog/library-conga/tree/master/Documentation

l HttpServers – contains several sample HTTP servers, including a WebSocket-
based chat server.

These servers are based on a new, experimental, class-based
architecture.

l RPCServices – contains several simple remote procedure call servers that use
Conga's Commandmod, which allows APL processes to exchange APL data
directly.

l TODServer – contains the TODServer namespace containing two functions,
RunText and RunCommand (for example usage, see Section 4.4and
Section 4.5).

Each of these samples can be loaded into your workspace using the]Load user
command.

EXAMPLE

]Load [DYALOG]/Samples/Conga/CertTool/CertTool

The most recently-updated versions of these Conga samples are in Dyalog's GitHub
repository at https://github.com/Dyalog/samples-conga.

revision 20240129_350 52

Conga User Guide

https://github.com/Dyalog/samples-conga

9 Advanced Usage

9.1 ConnectionOnly Property
Some server applications have a structure that makes it convenient to launch an APL
thread for each client connection and leave that thread running for the duration of
that client session. The ConnectionOnly property allows a user to specify that
calling the DRC.Wait function on the server object should not report all events but
only Connect events; individual application threads are expected to call the
DRC.Wait function on the connection that they are managing.

The ConnectionOnly property is set using the DRC.SetProp function.

EXAMPLE

DRC.SetProp 's1' 'ConnectionOnly' 1

[DYALOG]/Samples/Conga/RPCServices/ThreadedRPC contains an example of a
server that has the ConnectionOnly property set to 1 and runs a thread for each
connection.

9.2 Sending Files
In addition to sending data directly from an APL workspace, the contents of a file can
be sent without having to load it into the workspace first.

Prior to Conga version 3.0, the contents of a file had to be loaded into the
workspace before they could be sent.

The syntax required for the DRC.Send functions data element depends on the mode.

revision 20240129_350 53

Conga User Guide

In Text/BlkText/Raw/BlkRawmode, data is a 2-element vector comprising:
l [1] any data to be transmitted before the contents of the file – this allows you

to prepend information to the transmission if required
l [2] the full path and name of the file to send

EXAMPLE

DRC.Send 'c1' ('' 'c:\tmp\foo.txt')

In HTTPmode (when not upgraded to use the WebSocket protocol), data is one of
the following:

l a 2-element vector in which:
o [1] an empty vector (that is, '')
o [2] the name of a file to send (containing a complete, properly-

formatted, HTTP message)

EXAMPLE

DRC.Send obj ('' '/sample.txt')

l an array of up to 5 elements; the content of these elements depends on
whether the message is a request or a response:

When sending a request the elements are:
o [1] HTTP method (for example, 'GET' or 'POST')
o [2] URL of the requested resource
o [3] HTTP version (for example, 'HTTP/1.1')
o [4] 2-column matrix of head name/value pairs
o [5] Either a character vector representing the message body or a 2 or 3-

element array of ('' 'filename' ['gzip|deflate']) where
filename is the name of a file to send (containing only the message
body to be sent) and gzip|deflate indicates the acceptable optional
compression schemes that can be applied when sending the file.

When sending a response the elements are:
o [1] HTTP version (for example, 'HTTP/1.1')
o [2] HTTP status code (for example, '200')
o [3] HTTP status message (for example, 'OK')
o [4] 2-column matrix of head name/value pairs
o [5] Either a character vector representing the message body or a 2 or 3-

element array of ('' 'filename' ['gzip|deflate']) where

revision 20240129_350 54

Conga User Guide

filename is the name of a file to send (containing only the message
body to be sent) and gzip|deflate is the compression scheme
applied when sending the file – this must be one that the request
specified as being acceptable in the accept-encoding header.

EXAMPLE

DRC.Send obj ('HTTP/1.1' 200 'OK' headers (''
'/foo.txt' 'gzip'))

In HTTPmode (when upgraded to use the WebSocket protocol), data is a 2- or 3-
element vector, where:

l [1] is a 2-element vector comprising:
o [1] any data to be transmitted before the contents of the file
o [2] the full path and name of the file to send

l [2] is a Boolean that declares whether this is the final transmission in a
sequence:

o 0 indicates that this is not the final transmission in the sequence
o 1 indicates that this is the final transmission in the sequence

l [3] (optional) specifies the "operation code". Possible values are:
o 1 for Text (data must be character and will be converted to UTF-8)
o 2 for Binary (values between -128 and +127)
o 0 for a continuation (the data must have the same type as your earlier

transmission)

EXAMPLE

DRC.Send 'ws1' (('' 'c:\tmp\foo.txt') 1 1)

In Commandmode, the file transfer mechanism is not possible.

9.3 Compression Level

The CompLevel property specifies the level of compression to use when sending data
in Commandmode or a file in HTTPmode. Valid values are 0-9, where 0 indicates no
compression and 9 offers maximum compression. Higher levels of compression might
consume more CPU time, so you may need to balance the performance of your
network versus your CPU. The default is 6.

revision 20240129_350 55

Conga User Guide

The compression level can be set either using the DRC.SetProp function (see
Section A.28) or by specifying it when creating the client or server. Dyalog Ltd
recommends the latter approach to avoid potential race conditions.

DRC.Srv '' '' 8080 'http' ('CompLevel' 9)

DRC.SetProp '.' 'CompLevel' 9

9.4 Temporarily Prevent New Connections
The Pause property sets the status of the server's listening socket. This is useful if a
server needs a break from incoming connections because, for example, it is preparing
to shut down for maintenance or is overloaded. Possible values are:

l 0 : Continue normal operations. This is the default.
l 1 : Keep the server's listening socket open but do not accept new incoming

connections; connection attempts that have not timed out on the client side
will be accepted when Pause is set to 0.

l 2: Close the server's listening socket but keep the server object alive; recreate
the server's listening socket when Pause is set to 0.

EXAMPLE

DRC.SetProp 's1' 'Pause' 1 ⍝ do not accept connections

9.5 Allow/Deny Connections from Specific
Address Ranges

Ranges of IPv4 and IPv6 addresses can automatically be granted/denied connections.
This alleviates the need to perform validation of valid peer addresses in APL
application code.

revision 20240129_350 56

Conga User Guide

Address ranges are specified using the AllowEndPoints or DenyEndPoints
properties when a server is started (using the DRC.Srv function). Each set of ranges
is specified with a / character as the separator. Ranges can be specified using the IPv4
and/or IPv6 connection protocol, and any number of ranges can be specified with a ,
character as the separator. If both types of ranges are specified, then any overlap
between the ranges will be disallowed.

EXAMPLE

To tell the server being created to only accept connections from IP addresses
192.168.1.1 through 192.168.1.127 and 10.17.221.67 through 10.17.221.75:

allow←,⊂'IPV4' '192.168.1.1/127,10.17.221.67/75'
DRC.Srv '' 'localhost' 8080 ('AllowEndPoints' allow)

9.6 Timeout and Closed Events
The EventMode property determines whether a socket closing/timing out results in
an error message being generated or is reported as event. It is set on the root object
and applies to all clients and servers created as children of that root. Possible values
are:

l 0 : Closing a socket generates error number 1119; a socket timing out
generates error number 100. This is the default.

l 1: Closing a socket generates a Closed event; a socket timing out generates a
Timeout event.

The EventMode property is set using the DRC.SetProp function. For example, for a
socket closing/timing out to generate an event rather than report an error:

DRC.SetProp '.' 'EventMode' 1

The effect that setting the EventMode property has on what is returned by the
DRC.Wait function is shown in Table 9-1.

'Eventmode' 0 'Eventmode' 1

Socket closes 1119 'ERR_CLOSED' 'Socket
closed while receiving'

0 'S1' 'Closed' 1119

Socket times out 100 'TIMEOUT' '' 0 'S1' 'Timeout' 100

Table 9-1: Returned by the DRC.Wait function

revision 20240129_350 57

Conga User Guide

Returning events instead of errors is potentially a breaking change for legacy
code; it is, therefore, not enabled by default. However, Dyalog Ltd
recommends that you set the EventMode property to 1, and it is likely that
this will become the default in a future version of Conga.

9.7 Sent Event
Conga can make repeated calls to the DRC.Send function without waiting for the
previous call to the DRC.Send function to complete. This can cause large amounts of
data to accumulate in buffers (either in Conga or the network layer), which can be
undesirable – it also makes it difficult to cancel an operation, as a large number of
operations could be in the queue.

To mitigate these issues, a receipt can be requested on completion of a transmission;
this receipt takes the form of a Sent event. Receiving a Sent event indicates that
data has been transmitted and is no longer in the buffer; this means that there is
capacity for more DRC.Send function calls to be made.

A Sent event is requested by setting the DRC.Send function's close parameter to 3.

EXAMPLE

DRC.Send 'C1' data 3
0

DRC.Wait 'C1'
0 C1 Sent 0

When running in Commandmode, the Sent event is suppressed by the
response to the command if that is received before the next call to the
DRC.Wait function.

9.8 Options Parameter
Some client/server parameters can be set using the Options parameter (see Table 9-
2).

revision 20240129_350 58

Conga User Guide

DRC.Options.* Value Applicable
Modes Action When Specified

WSAutoUpgrade 1 Http
Requests to upgrade to use
the WebSocket protocol are
automatically accepted

RawAsByte 2 Raw,
BlkRaw

Returns data as type 83
(single-byte ¯128-127);
otherwise type 163 (0-255)

DecodeHttp 4 Http

HTTP messages are parsed
into an array of elements that
are meaningful to the
particular event and more
convenient for processing;
otherwise character streams
are left for the application to
parse

EnableBufferSizeHttp 16 Http

The BufferSize parameter
specified at the creation of an
HTTP client or server is used
to check the size of HTTP
header, body, chunk and
trailer messages; messages
that exceed BufferSize
cause error 1135 to be
generated.

EnableFifo 32 all

Conga processes requests in
their order of arrival (First-In-
First-Out). This overrides the
object's ReadyStrategy
property.

Table 9-2: Settings/Values of the Options parameter

The values are additive, and should all be set in a single call. The cumulative value can
be used instead of the names (names are used throughout this document for
transparency). Not all settings apply to all Conga modes.

revision 20240129_350 59

Conga User Guide

The Options parameter can be set either when creating a server/client or
subsequently with the DRC.SetProp function. Dyalog Ltd recommends the former
(at object creation) to eliminate the small window of exposure between the creation
of the object and the setting of the parameter where a request could be received but
not processed.

The DRC.Options namespace contains named enumerations for each of the settings
(see Section A.18).

EXAMPLE

To create a Conga client that automatically accepts positive WebSocket upgrade
responses from the server and decodes HTTP messages:

⍝ Recommended
DRC.Clt 'C1' 'localhost' 8080 'http' ('Options'

DRC.Options.(DecodeHttp+WSAutoUpgrade))

⍝ Using the enumerated (less transparent) equivalent
DRC.Clt 'C1' 'localhost' 8080 'http' ('Options' 5)

⍝ Alternative
DRC.Clt 'C1' 'localhost' 8080 'http'
DRC.SetProp 'C1' 'Options'

DRC.Options.(DecodeHttp+WSAutoUpgrade)

9.9 Magic Parameter
The Magic parameter is only relevant for servers/clients/connections in BlkText or
BlkRawmode. In these modes, Dyalog Ltd recommends that the Magic parameter is
used, as its value is a 32-bit integer that is unique to the blocks in a single data
transmission and can, therefore, be used to check the integrity of the received data.

A non-Conga client or server can communicate with a Conga peer if the non-
Conga component adheres to the message format by pre-pending the result of
the following expression to the data to be sent:

,⍉(4⍴256)⊤8 0+(⍴data) MagicNumber

EXAMPLE

Generate a 32-bit integer from a specified string using the Conga.Magic function:

⎕←magic←Conga.Magic 'my secret'
1836654707

revision 20240129_350 60

Conga User Guide

This integer is used as the Magic parameter value for servers/clients/connections in
BlkText or BlkRawmode. For information on the Conga.Magic function, see
Section A.4.

Start a server using the Magic parameter and generated value:

DRC.Srv 'server' '' 8000 'blktext' ('Magic' magic)
0 server

There are then two different usage patterns, depending on whether the Magic
parameter is set when the client is created ("pre-negotiated") or not.

Usage pattern 1: Pre-negotiated (the Magic parameter is set when the client is
created)

DRC.Clt 'client' '' 8000 'blktext' ('Magic' magic)
0 client

Usage pattern 2: Not pre-negotiated (the Magic parameter is not set when the client
is created, so the client needs to find out the magic number from the server)

⍝ The client is started without specifying the Magic parameter:
DRC.Clt 'client' '' 8000 'blktext'

0 client

⍝ The server sets the Magic property on the incoming connection:
conx←2⊃ ⎕←DRC.Wait 'server'

0 server.CON00000000 Connect 0
DRC.SetProp conx 'Magic' magic

0

⍝ The server sends the value to the client over the connection:
DRC.Send conx ''

0

⍝ The client receives this and sets its own Magic property:
msg←4⊃DRC.Wait 'client'
DRC.SetProp 'client' 'Magic' (Conga.Magic msg)

9.10 HTTP/1.1 Tunnelling
HTTP tunnelling can be used to make a connection to a proxy server (and,
subsequently, to the destination server) using the CONNECT HTTP method.
Optionally, a non-secure (HTTP) connection to the proxy server can be upgraded to a

revision 20240129_350 61

Conga User Guide

secure (HTTPS) connection to the destination server by setting the StartTLS
property on the client.

First, connect to the proxy server:

(rc clt)←DRC.Clt '' proxyAddr proxyPort 'http'

Next, use the CONNECT HTTP method to connect to the destination server.
proxyHeaders are any headers required by the destination server, for example, a
Proxy-Authorization header might be necessary to supply credentials for the
proxy connection:

(rc msg)←DRC.Send clt ('CONNECT' (destAddr:destPort)
'HTTP/1.1' proxyHeaders '')

If the destination server requires a secure (HTTPS) connection, create (or read) a
certificate and set the client's StartTLS property using the destination server
address and any appropriate SSLValidation settings:

cert←⎕NEW DRC.X509Cert
rc←DRC.SetProp clt 'StartTLS' (cert.AsArg,('SSLValidation'

0)('Address' destAddr))

revision 20240129_350 62

Conga User Guide

A Technical Reference

The functions, methods and objects in the Conga and DRC namespace are intended
for use by applications; these are documented in this appendix. Any additional
functions in these namespaces are for internal use and should not be called by
application code.

The notation used when describing the syntax for a function/method in this
document is as follows:

l square brackets [] indicate an optional argument
l curly braces {} indicate a mandatory argument
l a vertical line | separates mutually exclusive arguments
l italic text indicates an element that must be populated by the user

The order in which parameters are specified must be as shown in the syntax;
however, individual parameters can be specified using parenthesised name-value
pairs to eliminate the need to specify all parameters, for example, ('X509'
myCert) or ('EOM' (⎕UCS 13 10)).

Functions, methods and objects that start "DRC." refer to both objects within
the legacy DRC namespace and objects in an instance of the Conga.LIB class
(they are syntactically identical).

A.1 Return Codes
Many of the functions generate a return code as the first element of their result. The
value of this return code indicates whether the function was successful in its action:

l If the return code is 0, then the function successfully performed its requisite
actions; the rest of the result is as described in this appendix.

revision 20240129_350 63

Conga User Guide

l If the return code is not 0, then the function did not successfully perform its
requisite actions; the rest of the result vector comprises error name (vector
element [2]) and error description, if available (vector element [3]).

Dyalog Ltd recommends that you check the return code in the result before
attempting to process other elements of the result. As the number of items returned
can vary depending on whether the function successfully performed its requisite
actions, this requires code resembling the following:

:if 0≠1↑res ← DRC.Certs arg
rc err desc ← res
... ⍝ error processing

:else
rc stores ← res
... ⍝ normal processing

A.2 Conga Object Properties
Different Conga object types can have different properties. The values of these
properties are usually specified using the DRC.SetProp function (see Section A.28)
or when a server/client is created using the DRC.Srv/DRC.Clt function (see Section A.29
and Section A.10 respectively), and can be retrieved using the DRC.GetProp
function (see Section A.15).

The possible Conga object properties are described in Table A-1. Deprecated
properties are described in Table A-2.

Property Object Type Description/Syntax

CompLevel
Get: Y | Set: Y all

Limitation: Command and HTTPmodes only
The compression level to apply/in use when
sending data in Commandmode or a file in
HTTPmode. Valid values are 0-9, where 0
indicates no compression and 9 indicates
maximum compression.
The default is 6.

Table A-1: Conga object properties

revision 20240129_350 64

Conga User Guide

Property Object Type Description/Syntax

ConnectionOnly
Get: Y | Set: Y Server

Whether all or only Connect events are
reported when calling the DRC.Wait function
on the server object. Possible values are:

l 0 : Calling the DRC.Wait function on the
server object reports all events.

l 1 : Calling the DRC.Wait function on the
server object only reports Connect
events; individual application threads are
expected to call the DRC.Wait function
on the connection that they are
managing.

The default is 0.

DOSLimit
Get: Y | Set: Y Root

The size limit for HTTPHeader, HTTPBody,
HTTPChunk and HTTPTrailer events. Used to
mitigate denial-of-service (DOS) attacks.
The default is 1 MB.

EventMode
Get: Y | Set: Y Root

Whether a socket closing/timing out results in
an event or an error message being generated.
Possible values are:

l 0 : Closing a socket generates error
number 1119; a socket timing out
generates error number 100.

l 1 : Closing a socket generates a Closed
event; a socket timing out generates a
Timeout event.

The default is 0.

HostName
Get: Y | Set: N Server The hostname of the server.

HttpDate
Get: Y | Set: N Root Today's date in the format defined by the HTTP

protocol (Internet Standard RFC 1123).

Table A-1: Conga object properties (continued)

revision 20240129_350 65

Conga User Guide

Property Object Type Description/Syntax

KeepAlive
Get: Y | Set: Y

Set: Client,
Server,
Connection
Get: Server

The frequency with which periodic heartbeat
messages are sent to verify that the connection
is live. A 2-element vector in which:

l [1] is the time (in ms) to wait before
sending the first heartbeat

l [2] is the time interval (in ms) between
heartbeats

LocalAddr
Get: Y | Set: N

Client,
Server,
Connection

A 4-element vector in which:
l [1] is the communication protocol
l [2] is the IP address (formatted

according to the communication
protocol) and port number

l [3] is the address bytes
l [4] is the port number being used

Magic
Get: Y | Set: Y

Client,
Connection

Limitation: BlkRaw and BlkTextmodes only
A 32-bit integer unique to the blocks in a single
data transmission and used to check their
integrity.

Options
Get: Y | Set: Y

Client,
Server,
Connection

The requisite options for the object. Possible
values for individual options are detailed in
Section 9.8.
The default is 0.

Dyalog Ltd recommends using the
Options parameter on the
DRC.Clt/DRC.Srv functions to set
options rather than using this property
on DRC.SetProp.

OwnCert
Get: Y | Set: N

Client,
Server,
Connection

The X509Cert object containing information
about the certificate of the specified Conga
object.

Table A-1: Conga object properties (continued)

revision 20240129_350 66

Conga User Guide

Property Object Type Description/Syntax

Pause
Get: Y | Set: Y Server

The "pause" status of the server's listening
socket. Possible values are:

l 0 : Continue normal operations.
l 1 : Keep the server's listening socket

open but do not accept new incoming
connections; connection attempts that
have not timed out on the client side will
be accepted when Pause is set to 0.

l 2: Close the server's listening socket but
keep the server object alive; recreate the
server's listening socket when Pause is
set to 0.

The default is 0.

PeerAddr
Get: Y | Set: N

Client,
Connection

The address of the specified Conga object's
peer. A 4-element vector in which:

l [1] is the communication protocol
l [2] is the IP address (formatted

according to the communication
protocol) and port number

l [3] is address bytes
l [4] is the port number being used

PeerCert
Get: Y | Set: N

Client,
Connection

The X509Cert object containing information
about the certificate of the specified Conga
object's peer.

PropList
Get: Y | Set: N all A list of the properties relevant for the object's

type.

Table A-1: Conga object properties (continued)

revision 20240129_350 67

Conga User Guide

Property Object Type Description/Syntax

Protocol
Get: Y | Set: Y Root

The communication protocol to use. Possible
values are:

l IPv4 : use the IPv4 connection protocol;
if this is not possible then generate an
error

l IPv6 : use the IPv6 connection protocol;
if this is not possible then generate an
error

l IP : use the IPv6 connection protocol; if
this is not possible then use the IPv4
connection protocol

The default is IP.
This property value is inherited when creating a
connection unless a different value is specified.

ReadyStrategy
Get: Y | Set: Y Root

The strategy by which the next connection to
process is determined when more than one
connection has received data. Possible values
are:

l 0 : "Use First" – process the first
connection in the object tree (for
information on the object tree, see
Section A.30). This approach can result in
connections not being serviced.

l 1 : "Round Robin" – process the first
connection in the object tree after the
one that has just been processed.

l 2: "Oldest First" – process the
connection that has been waiting for the
longest time. This is considered to be the
least biased approach but consumes
slightly more CPU than strategy 1.

The default is 2.
If FifoMode is set on a server object then
ReadyStrategy for that server object is
overridden.

Table A-1: Conga object properties (continued)

revision 20240129_350 68

Conga User Guide

Property Object Type Description/Syntax

RootCertDir
Get: Y | Set: Y Root

The full path to (and name of) the directory
that contains Certificate Authority root
certificates.

StartTLS
Get: N | Set: Y

Client,
Connection

Upgrades an unsecure client/connection to a
secure client/connection.

TCPLookup
Get: Y | Set: N Root

Requires an additional argument comprising a
2-element vector in which:

l [1] is a URL or IP address as a character
string

l [2] is the port number (0 means all
ports at the URL/IP address) or service
name

The address of the specified URL/IP address and
port. A 4-element vector in which:

l [1] is the communication protocol
l [2] is the IP address (formatted

according to the communication
protocol) and port number

l [3] is the address bytes
l [4] is the port number

Multiple 4-element vectors can be returned if
both IPv4 and IPv6 information is available.

WSAccept
Get: N | Set: Y Connection

Limitation: HTTPmode only
The positive response to send to a
WSUpgradeReq request from a client. A
2-element vector in which:

l [1] is the data element (element [4])
of the WSUpgradeReq event received
from the client

l [2] is a character vector of any
additional headers that the server might
want to send

Table A-1: Conga object properties (continued)

revision 20240129_350 69

Conga User Guide

Property Object Type Description/Syntax

WSUpgrade
Get: N | Set: Y Client

Limitation: HTTPmode only
A request to upgrade a client to a WebSocket. A
3-element vector of character vectors in which:

l [1] is the path that follows the
hostname in the URL

l [2] is the hostname (usually that of the
server that the client is connected to)

l [3] is any additional header information
that the server being connecting to
might need to determine how it handles
the connection.

Table A-1: Conga object properties (continued)

Property Object Type Description/Syntax

Certificates
Get: Y | Set: N Root

Deprecated: use DRC.Certs (see Section A.7)
Limitation: Microsoft Windows only
Retrieves the contents of the Microsoft
certificate store named in the argument.

DecodeBuffers
Get: N | Set: Y

Client,
Server,
Connection

Deprecated: use DRC.Options (see
Section A.18)
Limitation: HTTPmode only
Whether HTTP events should return data in a
decoded format. Possible values are:

l 0 : do not decode any HTTP-related events
(a simple character vector is returned)

l 15: decode the data for all HTTP-related
events (HTTPHeader, HTTPTrailer,
HTTPChuck and HTTPBody)

The default is 0.

ErrorText
Get: Y | Set: N Root

Deprecated: use DRC.Error (see Section A.13)
Requires an additional argument comprising the
single error number of interest; returns the error
text corresponding to the error number.

Table A-2: Deprecated Conga object properties

revision 20240129_350 70

Conga User Guide

Property Object Type Description/Syntax

FifoMode
Get: Y | Set: Y Server

Deprecated: use DRC.Options (see
Section A.18)
Boolean indicating whether Conga handles
requests in their order of arrival (First-In-First-
Out). Possible values are:

l 0 : Conga handles requests in the order
defined in the ReadyStrategy property

l 1 : Conga handles requests in their order
of arrival (this overrides the
ReadyStrategy property)

Stores
Get: Y | Set: N Root

Deprecated: use DRC.Certs (see Section A.7)
Limitation: Microsoft Windows only
Retrieves the names of the Microsoft certificate
stores defined on the local machine.

Table A-2: Deprecated Conga object properties (continued)

revision 20240129_350 71

Conga User Guide

Property Object Type Description/Syntax

WSFeatures
Get: N | Set: Y Client, Server

Deprecated: use DRC.Options (see
Section A.18)
Limitation: HTTPmode only
The details of how an HTTP client should be
upgraded to use the WebSocket protocol.
Possible values are:

l 0 : a WSUpgrade request received by the
server results in a WSResponse event
being received by the client; this positive
response is not automatically accepted,
giving the client the opportunity to
validate and confirm the upgrade.

l 1 : a WSUpgrade request from the client
generates a WSUpgrade event from the
server, sent to the client; this positive
response is automatically accepted by the
client. This is the recommended approach
unless you have a good understanding of
the WebSocket protocol.

In both cases, the WSUpgrade request from the
client also generates a WSUpgradeReq event on
the server. The server can then validate the
request and, if acceptable, send a positive
response by setting the WSAccept property on
the connection. For more information see Table 6-
1.
The default is 0.

Table A-2: Deprecated Conga object properties (continued)

A.3 Function: Conga.Init
Purpose: Initialises Conga (if not already initialised) and returns a reference to the
new instance of Conga.LIB. Use Conga.Init in preference to Conga.New if an
existing root can be reused.

Syntax: ref ← Conga.Init {rootname}

revision 20240129_350 72

Conga User Guide

where:
l ref is a reference to the instance of Conga.LIB.
l rootname is the name of the Conga root. An empty rootname ('') causes

Conga to use the default root name of 'DEFAULT'. If the specified root name
does not already exist, Conga creates a new instance of Conga.LIB and
returns a reference to the new instance. If the specified root name already
exists, Conga.Init returns a reference to the existing root.

EXAMPLES

i1←Conga.Init ''
i2←Conga.Init ''
i3←Conga.New ''

Conga.RootNames
┌───────┬───┐
│DEFAULT│IC1│
└───────┴───┘

(i1 i2 i3).RootName
┌───────┬───────┬───┐
│DEFAULT│DEFAULT│IC1│
└───────┴───────┴───┘

Related functions:
l Conga.New – see Section A.5
l Conga.RootNames – see Section A.6
l DRC.RootName – see Section A.25

A.4 Function: Conga.Magic
Purpose: Returns a 32-bit integer generated from a specified string. This integer is
used as the Magic parameter value for servers/clients/connections in BlkText or
BlkRawmode. It is useful when setting the Magic parameter on a client when the
client and server have not pre-negotiated the value of the Magic parameter. For
more information on the Magic parameter, see Section 9.9.

Syntax: int ← Conga.Magic '{string}'

where:
l int is a 32-bit integer encoding generated from the specified string.
l string is an arbitrary string of Unicode text .

revision 20240129_350 73

Conga User Guide

EXAMPLE

Conga.Magic 'Secret'
1399153522

A.5 Function: Conga.New
Purpose: Initialises Conga (if not already initialised) and returns a reference to the
new instance of Conga.LIB. Use Conga.New in preference to Conga.Init if a new,
unique root must be created (that is, an existing root must not be reused).

Syntax: ref ← Conga.New {rootname}

where:
l ref is a reference to the instance of Conga.LIB.
l rootname is the name of the Conga root. An empty rootname ('') causes

Conga to generate a new instance of Conga.LIB with a unique root name and
return a reference to the instance. If the root name already exists, Conga.New
generates an error.

EXAMPLES

i1←Conga.New ''
i2←Conga.New ''
(i1 i2).RootName

┌───┬───┐
│IC1│IC2│
└───┴───┘

i3←Conga.New 'IC1'
Name in use: IC1

i3←Conga.New'IC1'
∧

i3←Conga.Init ''
(i1 i2 i3).RootName

┌───┬───┬───────┐
│IC1│IC2│DEFAULT│
└───┴───┴───────┘

Related functions:
l Conga.Init – see Section A.3
l Conga.RootNames – see Section A.6

revision 20240129_350 74

Conga User Guide

l DRC.RootName – see Section A.25

A.6 Function: Conga.RootNames
Purpose: Returns the root names of all Conga.LIB instances.

Syntax: rootnames ← Conga.RootNames

where:
l rootnames is a vector of the root names of the Conga root.

Example

i1←Conga.Init ''
Conga.RootNames

┌───────┐
│DEFAULT│
└───────┘

i2←Conga.New 'myRoot'
Conga.RootNames

┌───────┬──────┐
│DEFAULT│myRoot│
└───────┴──────┘

Now use the DRC namespace to initialise Conga. This is not something that you would
normally do but is being shown here to illustrate the difference in root reporting
between root objects generated from the legacy DRC namespace and those
generated from an instance of Conga.LIB.

DRC.Init ''
┌─┬─────────────────────────────┐
│0│Conga loaded from: conga32_64│
└─┴─────────────────────────────┘

Conga.RootNames ⍝ The DRC root name is not in the
result...
┌───────┬──────┐
│DEFAULT│myRoot│
└───────┴──────┘

DRC.RootName ⍝ ...even though the DRC ns has a RootName
DRC

revision 20240129_350 75

Conga User Guide

DRC←Conga.New '' ⍝ Make DRC refer to a Conga.LIB instance
DRC.RootName

IC1

Conga.RootNames ⍝ The root name is now shown
┌───────┬──────┬───┐
│DEFAULT│myRoot│IC1│
└───────┴──────┴───┘

Related functions:
l Conga.Init – see Section A.3
l Conga.New – see Section A.5
l DRC.RootName – see Section A.25

A.7 Function: DRC.Certs
This only applies when running on the Microsoft Windows operating system
and is limited to client-side certificates.

Purpose: Returns information from the current user certificate store defined on the
local machine.

Syntax: rc data ← DRC.Certs {'ListMSStore'|'MSStore' 'storename'}}

where:
l rc is the return code (see Section A.1)
l data is one of:

o a vector of character vectors each containing a store name, for example,
My and Root

o a vector of integer vectors containing the certificates from the specified
store

l 'ListMSStore' is an instruction to include Microsoft certificate store names
in the returned vector

l ''MSStore' 'storename' is an instruction to return the list of certificates
held in the certificate store named storename

EXAMPLES:
]Display DRC.Certs 'ListMSStore'

┌→───┐
│ ┌→───┐ │
│ 0 │ ┌→─┐ ┌→───┐ ┌→────┐ ┌→─┐ ┌→─────┐ ┌→───────────────┐ │ │
│ │ │My│ │Root│ │Trust│ │CA│ │UserDS│ │TrustedPublisher│ │ │

revision 20240129_350 76

Conga User Guide

│ │ └──┘ └────┘ └─────┘ └──┘ └──────┘ └────────────────┘ │ │
│ └∊───┘ │
└∊───┘

≢ca←2⊃DRC.Certs 'MSStore' 'CA' ⍝ how many in CA?
111

⍝ Display some information about the second certificate
(⎕NEW DRC.X509Cert (2⊃ca)).Formatted.Issuer

C=US,O=VeriSign\, Inc.,OU=VeriSign Trust Network,OU=(c) 2006
VeriSign\, Inc. - For authorized use only,CN=VeriSign Class 3
Public Primary Certification Authority - G5

A.8 Function: DRC.ClientAuth
Integrated Windows Authentication is only available on a Microsoft Windows
domain – both client and server must be running on Microsoft Windows.

Purpose: Performs client-side Integrated Windows Authentication (IWA). Only valid
for a Command-mode client connected to a Command-mode server

Syntax: rc ← DRC.ClientAuth {clientname} [{userid} {password}]

where:
l rc is the return code (see Section A.1)
l clientname is the name of the Command-mode client.
l userid is the user's Microsoft Windows User ID.
l password is the user's Microsoft Windows password.

DRC.ClientAuth and DRC.ServerAuth (see Section A.27) must be run at
the same time.

A.9 Function: DRC.Close
Purpose: Closes the specified Conga object.

Syntax: rc ← DRC.Close
{servername|clientname|connectionname|commandname}

revision 20240129_350 77

Conga User Guide

where:
l rc is the return code (see Section A.1)
l servername|clientname|connectionname|commandname is the name of

the Conga server/client/connection/command to close (respectively).

EXAMPLE

DRC.Close 'C1'
0

A.10 Function: DRC.Clt
Purpose: Creates a Conga client object.

Syntax: rc name ← DRC.Clt {clientname} {Address} [Port] [Mode]
[BufferSize] [SSLValidation] [EOM] [IgnoreCase] [Protocol]
[PublicCertData] [PrivateKeyFile] [PrivateKeyPass]
[PublicCertFile] [PublicCertPass] [PrivateKeyData] [Priority]
[Magic] [X509] [CompLevel] [Options]

where:
l rc is the return code (see Section A.1)
l name is the name of the Conga client that has been created. If no clientname

was specified ('') then this is auto-generated.
l clientame is the name of the Conga client to create. If '' is specified rather

than a specific name, then the name will be auto-generated.
l Address is the address of the server
l Port is the port number that the server will listen on
l Mode is the connection protocol (see Section 4.1.3). Possible values are

Command, Text, Raw, BlkText or BlkRaw. The default is Command.
l BufferSize is the maximum size (in bytes) allocated to the buffer that

receives data transmissions. The default is 16,384. Only valid for clients in
Raw/Text/BlkRaw/BlkTextmode, not those in Commandmode.

l SSLValidation is the sum of the relevant TLS flags (see Appendix C). Only
valid when creating a secure client (see Section 5.3).

l EOM is a simple character vector or a vector of vectors indicating the
termination string(s) (see Section 4.1.3). Only valid for clients in Raw/Text
mode, not those in BlkRaw/BlkText/Commandmode.

revision 20240129_350 78

Conga User Guide

l IgnoreCase is a Boolean indicating whether searches for the termination
string defined in EOM are case sensitive. Possible values are:

o 0 : do not ignore case when searching for termination strings
o 1 : ignore case when searching for termination strings

Only valid for clients in Raw/Textmode, not those in
BlkRaw/BlkText/Commandmode.

l Protocol is the communication protocol to use. Possible values are:
o IPv4 : use the IPv4 connection protocol; if this is not possible then

generate an error
o IPv6 : use the IPv6 connection protocol; if this is not possible then

generate an error
o IP : use the IPv6 connection protocol; if this is not possible then use the

IPv4 connection protocol.

The default is to inherit the protocol defined for the root object.

l PublicCertData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PrivateKeyFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PrivateKeyPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PublicCertFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PublicCertPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PrivateKeyData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l Priority is the GnuTLS priority string (for complete documentation of this,
see http://www.gnutls.org/manual/gnutls.html#Priority-Strings).

l Magic is a 32-bit integer used to check that the data has not been corrupted.
Only valid for clients in BlkRaw/BlkTextmode, not those in
Raw/Text/Commandmode.

l X509 is a reference to an instance of the X509Cert class. Only valid when
creating a secure client (see Section 5.3).

l CompLevel is the level of compression to use when sending data in Command
mode or a file in HTTPmode (see Section 9.3).

revision 20240129_350 79

Conga User Guide

http://www.gnutls.org/manual/gnutls.html#Priority-Strings

l Options is as integer representing the additive values of the client's
parameters (see Section 9.8).

The [PublicCertData], [PrivateKeyFile], [PrivateKeyPass],
[PublicCertFile], [PublicCertPass] and [PrivateKeyData] arguments are
mutally exclusive with the [X509] argument.

EXAMPLES

To create C1, a Commandmode client of a server at 192.168.1.1 listening on port
5050:

DRC.Clt 'C1' '192.168.1.1' 5050
0 C1

To create a secure Commandmode client of the secure Commandmode server at
192.168.1.1 listening on port 5050:

mycert←⊃DRC.ReadCertFromFile 'path/client-cert.pem'
mycert.KeyOrigin←'DER' 'path/client-key.pem'
DRC.Clt 'C1' '192.168.1.1' 5050,⊂('X509' mycert)

('SSLValidation' 16)
0 C1

To create a Textmode client (with an auto-generated name) of a server on the same
machine, listening on port 30, with a maximum buffer size of 1000 characters and a
termination sequence of <CRLF>:

DRC.Clt '' 'localhost' 30 'Text' 1000 ('EOM' (⎕UCS 13 10))
0 CLT00000000

Related function:
l DRC.Srv – see Section A.29

A.11 Function: DRC.DecodeOptions
Purpose: Returns a description of the settings represented by an Options value.

Syntax: desc ← DRC.DecodeOptions {optval}

where:
l desc is the name of the DRC.Options.* setting(s) represented by optval.
l optval is the value of the Options parameter.

revision 20240129_350 80

Conga User Guide

EXAMPLES

DRC.DecodeOptions 5
DecodeHttp+WSAutoUpgrade

DRC.DecodeOptions¨1 2 4
┌─────────────┬─────────┬──────────┐
│WSAutoUpgrade│RawAsByte│DecodeHttp│
└─────────────┴─────────┴──────────┘

A.12 Function: DRC.Describe
Purpose: Returns a description of the specified Conga object. Similar to the
DRC.Tree function (see Section A.30) except that DRC.Describe only returns
information for the specified object (not its children) and the descriptions are textual
rather than numeric codes.

Syntax: rc desc ← DRC.Describe {objectname}

where:
l rc is the return code (see Section A.1)
l desc is a multi-element vector proving a textual description of the specified

object
l objectname is the name of the Conga object to describe

For all objects except the root object, the description desc starts with the following
elements:

l [1] is the name of the object
l [2] is the object's type (see Section 4.1.1)
l [3] is the object's state (see Section 4.1.2)

The description desc of objects of type 4 (commands) and 5 (messages) has
additional elements:

l [4] is the size of the object that has been processed so far (in bytes)
l [5] is the size of the object that has not yet been processed (in bytes)

For the root object '.', the description desc comprises the following elements:

l [1] is [DRC]
l [2] is the version of Conga
l [3] is the object's state (see Section 4.1.2)
l [4] is the thread count

revision 20240129_350 81

Conga User Guide

EXAMPLES

DRC.Describe '.'
0 [DRC] Conga Dynamic Link Library 2.6.956.0 Copyright (C)
2004-2015 Dyalog Ltd. built Nov 2 2015 10:48:51. GnuTLS 3.2.15
Copyright (c) 2000-2015 Free Software Foundation, Inc. Built
Jul 9 2015 at 09:48:37. Revision: 106 State=RootInit
Threads=0

DRC.Describe 'C1'
0 CLT00000000 Client Connected

Similar functions:
l DRC.Names – see Section A.17
l DRC.Tree – see Section A.30

A.13 Function: DRC.Error
Purpose: Converts an error number into a textual identification or description of the
error.

Syntax: no name [desc] ← DRC.Error {no}

where:
l no is the error number
l name is the name of the error
l desc is a description of the error, for example, /* unable to complete a
TLS handshake with the peer */

EXAMPLE

DRC.Error 1009
1009 ERR_NAME_IN_USE

A.14 Function: DRC.Exists
Purpose: Verifies whether a specified Conga object exists.

Syntax: bool ← DRC.Exists {objectname}

revision 20240129_350 82

Conga User Guide

where:
l bool indicates whether the object exists. Possible values are:

o 0 – the object does not exist
o 1 – the object exists

l objectname is the name of the Conga object whose existence is being verified

EXAMPLE

DRC.Exists 'C1'
1

A.15 Function: DRC.GetProp
Purpose: Retrieves property values for the specified Conga object.

Syntax: rc res ← DRC.GetProp {objectname} {property} [arg]

where:
l rc is the return code (see Section A.1)
l res is the retrieved property value; its format depends on the property

requested (see A.15)
l objectname is the name of the Conga object for which to retrieve the value of

the specified property
l property is the name of the property to retrieve the value for; not all

properties are relevant for all object types (see A.15)
l arg is an additional argument that might be required depending on the

property requested (see A.15)

The property values that can be retrieved depend on the type of the specified Conga
object; they are described in Appendix A.2. These values are usually specified using
the DRC.SetProp function (see Section A.28) or when a server/client is created using
the DRC.Srv/DRC.Clt function (see Section A.29 and Section A.10 respectively).

EXAMPLES

DRC.GetProp '.' 'PropList'
0 Certificates DecodeCert PropList Protocol ReadyStrategy
RootCertDir Stores TCPLookup

revision 20240129_350 83

Conga User Guide

DRC.GetProp '.' 'TCPLookup' 'www.dyalog.com' 80
0 IPv6 [2a02:2658:1012::35]:80 42 2 38 88 16 18 0 0 0 0 0 0
0 0 0 53 80 IPv4 81.94.205.35:80 81 94 205 35 80

DRC.GetProp 'C1' 'OwnCert'
0 #.DRC.[X509Cert]

Related functions:
l DRC.SetProp – see Section A.28

A.16 Function: DRC.Init
Purpose: Loads and initialises (or reinitialises) the Conga Dynamic Link Library
(Microsoft Windows) or Shared Library (UNIX/Linux).

Syntax: rc ← [reset] DRC.Init {''}

where:
l rc is the return code (see Section A.1)
l reset is a code indicating the action to take if Conga has already been

initialised. Possible values are:
o 1 : close any existing Conga objects
o ¯1 : reload the library

For any other value, a message is returned stating that Conga has already been
loaded.

The right argument to this function is currently unused but is reserved for future
extensions.

EXAMPLE

DRC.Init ''
0 Conga loaded from: ...\conga27x64Uni

A.17 Function: DRC.Names
Purpose: Returns the names of existing Conga objects that are first-level descendants
of the specified Conga object.

Syntax: names ← DRC.Names {objectname}

revision 20240129_350 84

Conga User Guide

where:
l names is a list of the names of all first-level descendants of the specified Conga

object. If there are no first-level descendants of the specified Conga object,
then names is an empty vector.

l objectname is a character vector of the name of the Conga object for which
to return the names of its first-level descendants

EXAMPLES

DRC.Names ''
C1 C2 C3

DRC.(Close¨Names '')
0 0 0

Similar functions:
l DRC.Describe – see Section A.12
l DRC.Tree – see Section A.30

A.18 Namespace: DRC.Options
Purpose: Contains named enumerations for the Options parameter (see
Section 9.8). While numeric values result in smaller source code, the enumerations
are more descriptive. For example, the following statements are equivalent:

DRC.Clt '' '' 8080 'http' ('Options'
DRC.Options.

(WSAutoUpgrade+DecodeHttp))

DRC.Clt '' '' 8080 'http' ('Options' (1+4))

DRC.Clt '' '' 8080 'http' ('Options' 5)

The enumerations in the Options namespace are:

DRC.Options.(↑((⊂∘⍋)⌷⊢){(⍎⍵)⍵}¨⎕NL ¯3)
1 WSAutoUpgrade
2 RawAsByte
4 DecodeHttp

16 EnableBufferSizeHttp
32 EnableFifo

revision 20240129_350 85

Conga User Guide

A.19 Function: DRC.Progress
Purpose: Sends an APL array to a client in response to a command received from that
client. Only valid for a Command-mode server.

A server can call the DRC.Progress function any number of times before calling the
DRC.Respond function (see Section A.24).

Syntax: rc ← DRC.Progress {commandname} {data}

where:
l rc is the return code (see Section A.1)
l commandname is the name of the command received from the client. It must

match the objectname returned by the DRC.Wait function (see Section A.32)
l data is any array

EXAMPLE

A Command-mode client sends data to a Command-mode server using the DRC.Wait
function. The server stores the result in waitresult. The following expression can
be used to send a progress report to the client:

DRC.Progress (2⊃waitresult) 'Task 50% completed'

Related functions:
l DRC.Respond – see Section A.24
l DRC.Send – see Section A.26
l DRC.Wait – see Section A.32

A.20 Function: DRC.ReadCertFromFile
Purpose: Reads one or more certificates from a .pem certificate file as X509Cert
instances.

Syntax: X509 ← DRC.ReadCertFromFile {filename}

where:
l X509 is an instance of the X509Cert class for each certificate found within the

file.

revision 20240129_350 86

Conga User Guide

l filename is the complete path and filename of the .pem certificate to be
read. If a relative path is specified, it will relative to the current directory as
reported by ⊃1 ⎕NPARTS.

EXAMPLE

Dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
certfile←Dyalog,'/TestCertificates/client/

Jane Doe-cert.pem'
DRC.ReadCertFromFile certfile

#.[LIB].[X509Cert]

Related functions:
l DRC.ReadCertFromFolder – see Section A.21
l DRC.ReadCertFromStore – see Section A.22
l DRC.ReadCertUrls – see Section A.23

A.21 Function: DRC.ReadCertFromFolder
Purpose: Reads one or more certificates from each certificate file in a directory and
returns them as instances of the X509Cert class.

Syntax: X509 ← DRC.ReadCertFromFolder {folderspec}

where:
l X509 is a vector of X509Cert instances created from the certificates that were

read. If a certificate file contains more than one certificate, the corresponding
element in X509 will be a vector of instances of X509Cert representing the
certificates in the file.

l folderspec is the name of the directory containing the certificate files to be
read. Note that:

o it can contain the wildcard characters '?' and '*'.
o only files conforming to the .pem certificate file format will be

processed.
o any files matching folderspec that do not confirm to the .pem

certificate file format will be ignored.

EXAMPLE

Dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
folder←Dyalog,'/TestCertificates/server/'
DRC.ReadCertFromFolder folder

#.[LIB].[X509Cert] #.[LIB].[X509Cert]

revision 20240129_350 87

Conga User Guide

Related functions:
l DRC.ReadCertFromFile – see Section A.20
l DRC.ReadCertFromStore – see Section A.22
l DRC.ReadCertUrls – see Section A.23

A.22 Function: DRC.ReadCertFromStore
Purpose: Reads all certificates in the current user's Microsoft Windows Certificate
Store and returns them as instances of X509Cert.

Syntax: X509 ← DRC.ReadCertFromStore {storename}

where:
l X509 is a vector of X509Cert instances created from the certificates that were

read from the certificate store.
l storename is the name of a Microsoft Certificate Store; it must match one of

the entries returned by DRC.Certs 'ListMSStore'.

EXAMPLE

Return the number of certificates in the 'Root' Certificate Store. This corresponds to
the "Trusted Root Certification Authorities" store found in the Microsoft Certificate
Manager:

≢DRC.ReadCertFromStore 'Root'
98

Related functions:
l DRC.Certs – see Section A.7
l DRC.ReadCertFromFile – see Section A.20
l DRC.ReadCertFromFolder – see Section A.21
l DRC.ReadCertUrls – see Section A.23

A.23 Function: DRC.ReadCertUrls
Purpose: Reads all certificates in a current user's "Personal" Microsoft Windows
Certificate Store and returns them as instances of X509Cert.

Equivalent to running DRC.ReadCertFromStore 'My'.

revision 20240129_350 88

Conga User Guide

Syntax: X509 ← DRC.ReadCertUrls

where:
l X509 is a vector of X509Cert instances created from the certificates that were

read.

EXAMPLE

Return the number of certificates in the current user's "Personal" Microsoft Windows
Certificate Store:

≢DRC.ReadCertUrls
13

Related functions:
l DRC.Certs – see Section A.7
l DRC.ReadCertFromStore – see Section A.22

A.24 Function: DRC.Respond
Purpose: Sends an APL array to a client in response to a command received from that
client. Only valid for a Command-mode server.

Syntax: rc ← DRC.Respond {commandname} {data}

where:
l rc is the return code (see Section A.1)
l commandname is the name of the command received from the client. It must

match the objectname returned by the DRC.Wait function (see Section A.32)
l data is any array

EXAMPLE

A Command-mode client sends data to a Command-mode server using the DRC.Wait
function. The server stores the result in waitresult. The following expression can
be used to call the Process function on the data that accompanied the most recent
command and send the result to the client:

DRC.Respond (2⊃waitresult) (Process 4⊃waitresult)

revision 20240129_350 89

Conga User Guide

Related functions:
l DRC.Progress – see Section A.19
l DRC.Send – see Section A.26
l DRC.Wait – see Section A.32

A.25 Function: DRC.RootName
Purpose: Returns the root name for the DRC namespace or Conga.LIB instance.

Syntax: rootname ← DRC.RootName

where:
l rootname is the name of the Conga root:

o If DRC refers to the DRC namespace, then rootname is the hard-coded
character vector 'DRC'.

o If DRC refers to an instance of Conga.LIB, then the rootname is the
root name generated when the instance was created.

EXAMPLES

DRC.Init ''
┌─┬─────────────────────────────┐
│0│Conga loaded from: conga32_64│
└─┴─────────────────────────────┘

DRC.RootName ⍝ DRC namespace has a RootName of 'DRC'
DRC

DRC←Conga.New 'myDRC' ⍝ DRC refers to a Conga.LIB instance
DRC.RootName ⍝ RootName is as specified

myDRC

Related functions:
l Conga.Init – see Section A.3
l Conga.New – see Section A.5
l Conga.RootNames – see Section A.6

A.26 Function: DRC.Send
Purpose: Send data to the peer client/server. Not valid for a Command-mode server
(see Section A.24 for sending a response from a Command-mode server).

revision 20240129_350 90

Conga User Guide

Syntax: rc clientname|connectionname.commandname|messagename ←
DRC.Send {clientname[.commandname|.messagename]|connectionname}
{data} [close]

where:
l rc is the return code (see Section A.1)
l clientname[.commandname]|connectionname is dependent on the mode

and whether a full name is supplied or auto-generation is required:
o for client objects and server objects in Textmode or Rawmode:

n if clientname is supplied, Conga auto-generates a
messagename and returns it as the second element of the result
in the format clientname.messagename.

n if connectionname is supplied, Conga auto-generates a
messagename and returns it as the second element of the result
in the format connectionname.messagename.

n if clientname.messagename or
connectionname.messagename is supplied, Conga returns it
unaltered as the second element of the result.

messagename is not the name of a message object.

o for client objects in Commandmode:
n if clientname is supplied, Conga auto-generates a

commandname and returns it as the second element of the result
in the format clientname.commandname.

n if clientname.commandname is supplied, Conga returns it
unaltered as the second element of the result.

l data is the array to send to the peer server/client object; its format is
dependent on the mode:

o Commandmode (sending data) – any APL data array (including
namespaces but not classes or instances of classes)

o Commandmode (sending a file) – not possible
o Text/BlkTextmode (sending data) – character strings comprising

characters with Unicode code points less than 256. To transmit
characters outside this range, Dyalog Ltd recommends that you either
use UTF-8 character encoding (for information on this, see ⎕UCS in the
Dyalog APL Language Reference Guide) or switch to Rawmode and
convert the character string to the appropriate format (for example, by

revision 20240129_350 91

Conga User Guide

applying ⎕UCS).
o Raw/BlkRawmode (sending data) – a vector of integers in the range 0 to

255 (negative integers -128 to -1 are also accepted and mapped to 128-
255).

o Text/BlkText/Raw/BlkRawmode (sending a file) – a 2-element vector
comprising:

[1] any data to be transmitted before the contents of the file
[2] the full path and name of the file to send

o HTTPmode (not upgraded to use the WebSocket protocol) – one of the
following:

n a character vector comprising the entire HTTP message
n a 2-element vector where:

n [1] an empty vector (that is, '')
n [2] the name of a file to send (containing a complete,

properly-formatted, HTTP message)
n an array of up to 5 elements; the content of these elements

depends on whether the message is a request or a response:

When sending a request the elements are:
n [1] HTTP method (for example, 'GET' or 'POST')
n [2] URL of the requested resource
n [3] HTTP version (for example, 'HTTP/1.1')
n [4] 2-column matrix of head name/value pairs
n [5] Either a character vector representing the message

body or a 2 or 3-element array of ('' 'filename'
['gzip|deflate']) where filename is the name of a
file to send (containing only the message body to be sent)
and gzip|deflate indicates the acceptable optional
compression schemes that can be applied when sending
the file.

When sending a response the elements are:
n [1] HTTP version (for example, 'HTTP/1.1')
n [2] HTTP status code (for example, '200')
n [3] HTTP status message (for example, 'OK')
n [4] 2-column matrix of head name/value pairs

revision 20240129_350 92

Conga User Guide

n [5] Either a character vector representing the message
body or a 2 or 3-element array of ('' 'filename'
['gzip|deflate']) where filename is the name of a
file to send (containing only the message body to be sent)
and gzip|deflate is the compression scheme applied
when sending the file – this must be one that the request
specified as being acceptable in the accept-encoding
header.

n HTTPmode (upgraded to use the WebSocket protocol) – a 2- or 3-
element vector, where:

[1] is one of the following:
n when sending data – a character or integer vector of the

data to be transmitted
n when sending a file – a 2-element vector comprising:

[1] any data to be transmitted before the contents of the
file
[2] the full path and name of the file to send

[2] is the FIN flag, a Boolean that declares whether this is the
final fragment in a sequence. Possible values are:

n 0 indicates that this is not the final fragment in a sequence
n 1 indicates that this is the final (or only) fragment in a

sequence
[3] (optional) specifies the "operation code" (if an operation
code is not specified then it is inferred from the data). Possible
values are:

n 1 for Text (data must be character and will be converted to
UTF-8)

n 2 for Binary (values between -128 and +255)
n 0 for a continuation (the data must have the same type as

your earlier transmission)
l close indicates the action to take after sending the data to the peer object.

Possible values are:
o 0 : no action taken. This is the default value.
o 1 : the connection will be closed.

revision 20240129_350 93

Conga User Guide

o 2 : the connection remains open, the command object will be closed –
only relevant for client objects in Commandmode
3 : generate a receipt (a Send event) on completion of the transmission
of the data

EXAMPLES

A client object in Command mode:

To create a command with an auto-generated name below client C1 and send an APL
array to the server:

DRC.Send 'C1' ('PlusReduce' (⍳10))

A server object in Command mode:

Not applicable – server objects in Commandmode use the DRC.Respond function
rather than the DRC.Send function (see Section A.24).

A server or client object in Raw mode or Text mode:

To send the text 'Bye' on client C1 and subsequently close the connection:

DRC.Send 'C1' ('Bye', ⎕UCS 13) 1

A server or client object in HTTP mode :

To send the file foo.txt (containing only the message body to be sent) using the gzip
compression scheme:

DRC.Send obj ('HTTP/1.1' 200 'OK' headers ('' '/foo.txt'
'gzip'))

To send the file sample.txt (containing a complete, properly-formatted, HTTP
message) :

DRC.Send obj ('' '/sample.txt')

A server or client object sending a file after being upgraded to use the WebSocket
protocol:

DRC.Send 'ws1' (('' 'c:\tmp\foo.txt') 1 1)

revision 20240129_350 94

Conga User Guide

Related functions:
l DRC.Progress – see Section A.19
l DRC.Respond – see Section A.24
l DRC.Wait – see Section A.32

A.27 Function: DRC.ServerAuth
Integrated Windows Authentication is only available on a Microsoft Windows
domain – both client and server must be running on Microsoft Windows.

Purpose: Performs server-side Integrated Windows Authentication (IWA).

Syntax: rc ← DRC.ServerAuth {connectionname}

where:
l rc is the return code (see Section A.1)
l connectionname is the name of the connection through which a

Command-mode server responds to a Command-mode client.

DRC.ClientAuth (see Section A.8) and DRC.ServerAuthmust be run at the
same time.

A.28 Function: DRC.SetProp
Purpose: Updates the qualified properties of the specified Conga object.

Syntax: DRC.SetProp {objectname} {property} {value}

where:
l objectname is the Conga object for which to set a new property value
l property is the name of the property to set
l value is the value to set the specified property to

The property values that can be set depend on the type of the specified Conga object;
they are described in Appendix A.2. Some of these values can also be specified when a
server/client is created using the DRC.Srv/DRC.Clt function (see Section A.29 and
Section A.10 respectively). The current values can be retrieved using the
DRC.GetProp function (see Section A.15).

revision 20240129_350 95

Conga User Guide

EXAMPLES

DRC.SetProp '.' 'RootCertDir' 'C:\..\TestCertificates\ca'
0

DRC.SetProp 'C1' 'KeepAlive' (1000 2000)
0

Related functions:
l DRC.GetProp – see Section A.15

A.29 Function: DRC.Srv
Purpose: Creates a Conga server to listen on a specified port. If certificate information
is provided, then a secure server is created.

Syntax: rc name ← DRC.Srv {Name} [Address] [Port] [Mode]
[BufferSize] [SSLValidation] [EOM] [IgnoreCase] [Protocol]
[PublicCertData] [PrivateKeyFile] [PrivateKeyPass]
[PublicCertFile] [PublicCertPass] [PrivateKeyData] [Priority]
[Magic] [X509] [AllowEndPoints] [DenyEndPoints] [CompLevel]
[Options]

where:
l rc is the return code (see Section A.1)
l name is the name of the Conga server that has been created. If no Name was

specified ('') then this is auto-generated.
l Name is the name of the Conga server to create. If '' is specified rather than a

specific name, then the name will be auto-generated.
l Address is the address of the server
l Port is the port number that the server will listen on
l Mode is the connection protocol (see Section 4.1.3). Possible values are

Command, Text, Raw, BlkText or BlkRaw. The default is Command.
l BufferSize is the maximum size (in bytes) allocated to the buffer that

receives data transmissions. The default is 16,384. Only valid for clients in
Raw/Text/BlkRaw/BlkTextmode, not those in Commandmode.

l SSLValidation is the sum of the relevant TLS flags (see Appendix C). Only
valid when creating a secure client (see Section 5.3).

revision 20240129_350 96

Conga User Guide

l EOM is a simple character vector or a vector of vectors indicating the
termination string(s) (see Section 4.1.3). Only valid for clients in Raw/Text
mode, not those in BlkRaw/BlkText/Commandmode.

l IgnoreCase is a Boolean indicating whether searches for the termination
string defined in EOM are case sensitive. Possible values are:

o 0 : do not ignore case when searching for termination strings
o 1 : ignore case when searching for termination strings

Only valid for clients in Raw/Textmode, not those in
BlkRaw/BlkText/Commandmode

l Protocol is the communication protocol to use. Possible values are:
o IPv4 : use the IPv4 connection protocol; if this is not possible then

generate an error
o IPv6 : use the IPv6 connection protocol; if this is not possible then

generate an error
o IP : use the IPv6 connection protocol; if this is not possible then use the

IPv4 connection protocol.

The default is to inherit the protocol defined for the root object.

l PublicCertData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PrivateKeyFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PrivateKeyPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PublicCertFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PublicCertPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PrivateKeyData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l Priority is the GnuTLS priority string (for complete documentation of this,
see http://www.gnutls.org/manual/gnutls.html#Priority-Strings).

l Magic is a 32-bit integer used to check that the data has not been corrupted.
Only valid for servers in BlkRaw/BlkTextmode, not those in
Raw/Text/Commandmode.

revision 20240129_350 97

Conga User Guide

http://www.gnutls.org/manual/gnutls.html#Priority-Strings

l X509 is a reference to an instance of the X509Cert class. Only valid when
creating a secure server (see Section 5.4).

l AllowEndPoints is a range or set of ranges of addresses that are
automatically granted connections without validation. Each set of ranges is
specified with a / character as the separator. Ranges can be specified using the
IPv4 and/or IPv6 connection protocol, and any number of ranges can be
specified with a , character as the separator. Any addresses that are also
included in the range specified for DenyEndPoints will be denied connection
(see Section 9.5).

l DenyEndPoints is a range or set of ranges of addresses that are automatically
denied connections without validation. Each set of ranges is specified with a /
character as the separator. Ranges can be specified using the IPv4 and/or IPv6
connection protocol, and any number of ranges can be specified with a ,
character as the separator (see Section 9.5).

l CompLevel is the level of compression to use when sending data in Command
mode or a file in HTTPmode (see Section 9.3).

l Options is as integer representing the additive values of the server's
parameters (see Section 9.8).

The [PublicCertData], [PrivateKeyFile], [PrivateKeyPass],
[PublicCertFile], [PublicCertPass] and [PrivateKeyData] arguments are
mutally exclusive with the [X509] argument.

EXAMPLES

To create APLRPC, a Commandmode server listening on port 5050:

DRC.Srv 'APLRPC' '' 5050 'Command'
0 APLRPC

To create a secure Commandmode server on port 5050 of the local machine using
the named certificate/key files and a TLS flag value of 64 (RequestClientCertificate):

cert←⊃DRC.ReadCertFromFile 'path/server-cert.pem'
cert.KeyOrigin←'DER' 'path/server-key.pem'
certs←('X509' cert)('SSLValidation' 64)
DRC.Srv 'APLRPC' '' 5050 'Command',certs

0 APLRPC

revision 20240129_350 98

Conga User Guide

To create a Textmode server (with an auto-generated name) listening on port 23,
with a maximum buffer size of 1000 characters and a termination sequence of <CR>:

DRC.Srv '' '' 23 'Text' 1000 ('EOM' (⎕UCS 13))
0 SRV00000000

Related function:
l DRC.Clt – see Section A.10

A.30 Function: DRC.Tree
Purpose: Returns information about the specified Conga object and all of its first
generation children (or all existing Conga objects if the specified object is root).

Syntax: rc tree ← DRC.Tree {objectname}

where:
l rc is the return code (see Section A.1)
l tree is a 2-element vector in which the first element describes the specified

object and the second element is a vector of trees describing each of its first-
generation children (the second element is empty if the specified object has no
children and it contains all existing Conga objects if the specified object is root).

l objectname is the name of the Conga object to describe.

For all objects, the description starts with the following elements:
l [1] is the name of the object
l [2] is the object's type (see Section 4.1.1)
l [3] is the object's state (see Section 4.1.2)

Some types of Conga object also include additional elements:
l Conga objects of type 0 (root):

o [4] is the version of Conga
o [5] is the thread count

l Conga objects of type 4 (commands) or 5 (messages):
o [4] is the size of the object that has been processed so far (in bytes)
o [5] is the size of the object that has not yet been processed (in bytes)

EXAMPLE

DRC.Srv 'S1' '' 5000
0 S1

revision 20240129_350 99

Conga User Guide

DRC.Clt 'C1' 'localhost' 5000
0 C1

DRC.Wait 'S1' 100
0 S1.CON00000000 Connect 0

(rc (root subtree)) ← DRC.Tree '.'

]Disp root
┌→┬─┬─┬───┬─┐
│.│0│2│Conga.Dynamic.Link.Library 2.7.1020.0 Copyright....│1│
└⊖┴─┴─┴───┴─┘

This elements in this result indicate that:
l [1] : The root object has no name (element is empty)
l [2] : The object type code is 0 (Root)
l [3] : The object state code is 2 (RootInit)
l [4] : The version number (and additional information) is available
l [5] : The number of semaphores currently in use for thread synchronisation is

1

]Disp subtree
┌→─────────────────────────────────┬────────────┐
│┌→───────┬───────────────────────┐│┌→───────┬─┐│
││┌→─┬─┬─┐│┌→────────────────────┐│││┌→─┬─┬─┐│0││
│││S1│1│3│││┌→────────────────┬─┐│││││C1│2│4││ ││
││└─→┴─┴─┘│││┌→──────────┬─┬─┐│0│││││└─→┴─┴─┘│ ││
││ ││││CON00000000│3│4││ ││││└───────→┴⊖┘│
││ │││└──────────→┴─┴─┘│ ││││ │
││ ││└────────────────→┴⊖┘│││ │
││ │└────────────────────→┘││ │
│└───────→┴──────────────────────→┘│ │
└─────────────────────────────────→┴───────────→┘

The elements in this result indicate that there are two first-level children of the root:
l Conga object S1:

o its object type code is 1 (server)
o it is in state 3 (Listen)
o it has a child object, CON00000000:

n its object type is 3 (Connection)
n it is in state 4 (Connected)

revision 20240129_350 100

Conga User Guide

l Conga object C1:
o its object type code is 2 (client)
o it is in state 4 (Connected)

Similar functions:
l DRC.Describe – see Section A.12
l DRC.Names – see Section A.17

A.31 Function: DRC.Version
Purpose: Returns the Conga version number.

Syntax: ver ← DRC.Version

where:
l ver is a 3-element vector in which:

o [1] is the major version number
o [2] is the minor version number
o [3] is the build number

EXAMPLE

DRC.Version
3 5 1642

A.32 Function: DRC.Wait
Purpose:Waits for an event to occur.

Syntax: rc objectname event data ← DRC.Wait
{clientname|servername|connectionname|commandname} [timeout]

where:
l rc is the return code (a return code of 100 indicates a timeout, for other

return codes see Section A.1)
l objectname is the name of the object on which the event occurred.
l event is the name of the event that occurred– see Table A-3
l data is the received data.
l clientname|servername|connectionname|commandname is the name of

the object waiting for an event:

revision 20240129_350 101

Conga User Guide

o if a servername or connectionname name is specified, the DRC.Wait
function will report events on the named object or any of its children.

o If a Command-mode client is waiting on a specific command, the full
commandname can be specified.

l timeout is the number of ms to wait before timing out. The default is 1,000.

Event Name Description

Block
Text or Rawmode only: A block of data was received and the
connection is still open.

BlockLast

Text or Rawmode only: A block of data was received and the
connection was closed; no more data is expected. If the
connection is closed while it is inactive, a BlockLast event
will be reported with empty data.

Closed
The socket has been closed. Only valid when EventMode is set
to 1 (see Section A.28).

Connect
The Conga object has been created but has not yet participated
in any data transmissions.

Error An error occurred.

HTTPBody

HTTPmode only: The body of an HTTP message (representing
the end of an HTTP message) was received. Only valid when
receiving an HTTP message with the Transfer-Encoding header
not set to 'chunked' and a Content-Length header that is not 0.

HTTPChunk
HTTPmode only: A chunk was received. Only valid when
receiving an HTTP message with the Transfer-Encoding header
set to 'chunked'.

HTTPHeader
HTTPmode only: an HTTP header (the start of an HTTP
message) was received.

HTTPTrailer

HTTPmode only: an HTTP trailer (representing the end of an
HTTP message) was received. Only valid when receiving an
HTTP message with the Transfer-Encoding header set to
'chunked'.

Table A-3: Types of event that can occur

revision 20240129_350 102

Conga User Guide

Event Name Description

Progress
Command-mode client only: The server transmitted data using
the DRC.Progress function.

Receive Commandmode only: Data has been received.

Sent
The transmission of data has been completed. Only valid when
the DRC.Send function's close parameter is set to 3 (see
Section A.26).

Timeout
The DRC.Wait function has timed out. Only valid when
EventMode is set to 1 (see Section A.28).

WSReceive
HTTPmode only: Data has been received using the WebSocket
protocol.

WSResponse

HTTP-mode client only: The server has accepted a request from
the client to upgrade the connection to use the WebSocket
protocol. Only valid when WSFeatures on the client is set to 0
(see Section A.28).

WSUpgrade

HTTPmode only: The client has requested that the connection
is upgraded to use the WebSocket protocol or the server has
accepted a request from the client to upgrade the connection
to use the WebSocket protocol. Only valid when WSFeatures
is set to 1 (see Section A.28).

WSUpgradeReq

HTTP-mode server only: The client has requested that the
connection is upgraded to use the WebSocket protocol. Only
valid when WSFeatures on the server is set to 0 (see
Section A.28).

Table A-3: Types of event that can occur (continued)

EXAMPLES

DRC.Srv 'S1' '' 5000
0 S1

DRC.Clt 'C1' 'localhost' 5000
0 C1

DRC.Wait 'S1' 5000
0 S1.CON00000000 Connect 0

revision 20240129_350 103

Conga User Guide

DRC.Send 'C1.fakename' 'Testing'
0 C1.fakename

DRC.Wait 'S1' 5000
0 S1.CON00000000.fakename Receive Testing

In Commandmode, command names are carried over to the server.

Related functions:
l DRC.Progress – see Section A.19
l DRC.Respond – see Section A.24
l DRC.Send – see Section A.26

A.33 Class: DRC.X509Cert
Purpose: Provides a container to encapsulate X.509-style certificates. Dyalog Ltd
recommends that this class is used when providing secure communications.

#.DRC.X509Cert.[X509Cert] is an instance of the X509Cert class.

Syntax – Shared Methods: These read certificates from various sources; they are not
instance-specific.

These shared methods have been superseded by functions of the same name
but are included in this document for backwards-compatibility purposes.
Dyalog Ltd recommends using the following:

l DRC.ReadCertFromFile (see Section A.20) instead of
DRC.X509Cert.ReadCertFromFile

l DRC.ReadCertFromFolder (see Section A.21) instead of
DRC.X509Cert.ReadCertFromFolder

l DRC.ReadCertFromStore (see Section A.22) instead of
DRC.X509Cert.ReadCertFromStore

l DRC.ReadCertURLs (seeSection A.23) instead of
DRC.X509Cert.ReadCertURLs

To return certificate instances of all the certificates in a specified file:

certs ← DRC.X509Cert.ReadCertFromFile {filename}

To return certificate instances of all the certificates in a specified directory that match
the specified pattern:

certs ← DRC.X509Cert.ReadCertFromFolder {pathname}

revision 20240129_350 104

Conga User Guide

To return certificate instances of all the certificates in "My" certificate store:

certs ← DRC.X509Cert.ReadCertUrls

where:
l certs is a vector of certificate instances where each element is of type

DRC.X509Cert.
l filename is a certificate file name as a character vector, for example,
'server-cert.pem'. Although it is a single file name, the file can contain
multiple certificates.

l pathname is a character vector specifying the path to the directory that
contains certificate files. It can be fully-qualified or relative to the current
working directory. Wildcard characters can be used, for example,
'c:\mycerts*.pem', although if files match the pattern but are not valid
certificate files then certs will be an empty vector.

Syntax – Instance Methods: These act on specific certificate instances.

To return the certicate's PublicCertFile and PrivateKeyFile parameters in a
format suitable for use with DRC.Clt and DRC.Srv:

parms ← #.DRC.X509Cert.[X509Cert].AsArg

To identify the keys that the certificate has access to:

keys ← #.DRC.X509Cert.[X509Cert].IsCert

To return the certificate chain for the certificate:

certs ← #.DRC.X509Cert.[X509Cert].Chain

To save the certificate instance to a file:

result ← [name] #.DRC.X509Cert.[X509Cert].Save path

To follow the certificate chain from the current certificate until a root certificate is
found and, if possible, updates the DRC.GetProp function's PeerCert property so
that the certificate chain is complete:

chain ← #.DRC.X509Cert.[X509Cert].CopyCertificateChainFromStore

where:
l keys indicates the keys that the certificate has access to (determines how it

can be used):
o 0 : the certificate does not have access to either a public key or a private

key; connections will be anonymous

revision 20240129_350 105

Conga User Guide

o 1 : the certificate has access to a public key but not a private key; can be
used to authenticate a certificate chain

o 2: the certificate has access to both a public key and a private key; can
be used for full Conga functionality

l certs is a vector of certificate instances where each element is of type
DRC.X509Cert

l result indicates whether the file saved successfully:
o 0 : the file saved successfully
o ⎕EN : the file did not save successfully

l name is the name under which to save the file. If not specified, a name is built
from the instance's Subject.

l path is a character vector specifying the path to the directory in which to save
the certificate file. It can be fully-qualified or relative to the current working
directory.

l chain is the number of certificates in the chain (including the calling instance
and the root certificate).

EXAMPLES

Identify the keys that john (an instance of the X509Cert class in the Samples
namespace) has access to:

Samples.john.IsCert
1 ⍝ access to public key but not private key

Return the issuer information for john (an instance of the X509Cert class in the
Samples namespace):

(Samples.john.Chain).Formatted.Issuer
O=Test CA,CN=Test CA

A.33.1 Instances of the DRC.X509Cert Class

Each instance of the DRC.X509Cert class has the properties detailed in Table A-4.

Property Description

Cert Integer vector of raw certificate data.

Table A-4: Properties of each instance of the DRC.X509Cert class

revision 20240129_350 106

Conga User Guide

Property Description

CertOrigin

For certificates read from a certificate store this is:
'MSStore' storename
For certificates read from a file this is:
'DER' and a fully qualified filename
For example:
'DER'
C:\apps\dyalog141U64\TestCertificates\client\Jo
hn Doe-cert.pem

Elements
Extended
Formatted

Elements, Extended, and Formatted are namespaces that
contain specific information about the certificate. Elements
contains the information in a basic format, while Formatted
and Extended have the same elements in a more human-
readable format (Extendedmay, in some instances, contain
additional information).

KeyOrigin

For keys read from a certificate store this is:
'MSStore' storename
For keys read from a file this is:
'DER' and a fully qualified filename
For example:
'DER'
C:\apps\dyalog141U64\TestCertificates\client\Jo
hn Doe-key.pem

LDRC Internal reference to the local DRC namespace.

ParentCert
An instance of the certificate directly above this one in the
certificate chain. Only relevant if this certificate is part of a
certificate chain but not at the top of the chain.

UseMSStoreAPI

Boolean indicating which API to use to decode certificate
information. Possible values are:

l 0 : Use the GnuTLS API
l 1 Use the Microsoft certificate store API

For applications that could be deployed on an operating
system other than Microsoft Windows, the GnuTLS API
should be used.

Table A-4: Properties of each instance of the DRC.X509Cert class (continued)

revision 20240129_350 107

Conga User Guide

Not all certificates have values for all of the elements that are contained in the
Elements, Extended, and Formatted properties, and some elements are more
useful than others.Table A-5 lists some of the more useful of the possible elements (it
is not a comprehensive reference of X.509 certificate structure).

Property Description

AlgorithmID The cryptographic algorithm used to generate the signature, for
example, RSA-SHA1 and DSA-SIGN.

Description A text description of the certificate.

Issuer

The issuer of the certificate. Useful when validating certificate
chains (the Issuer of a certificate should match the Subject of its
parent certificate). Self-signed certificates have identical Issuer and
Subject elements.

Key The certificate's key in Boolean format.

KeyHex The certificate's key in hexadecimal format.

KeyID The certificate's key's cryptosystem, for example, RSA or DHE.

KeyLength The length of the certificate's key (in bits). Maximum value is
16,384.

SerialNo A number that uniquely identifies the certificate and is issued by
the certification authority.

Subject

The subject of the certificate. Useful when validating certificate
chains (the Subject of a certificate should match the Issuer of its
child certificate). Self-signed certificates have identical Issuer and
Subject elements.

ValidFrom
ValidTo

Together, these two elements define the period of validity for the
certificate.

Version The version of the X.509 standard applied when creating the
certificate (currently this is 3).

Table A-5: Some of the elements that can comprise the Elements, Extended, and
Formatted properties of each instance of the DRC.X509Cert class

revision 20240129_350 108

Conga User Guide

B Certificates

Many different file formats can be used for storing X.509 certificates, including PEM,
DER, PFX, P7C and P12; the popularity of these formats varies between platforms.
Conga supports the PEM and DER format files on all platforms; these have file
extensions .pem and .der respectively. Certificates in other formats can be used after
they have been converted to PEM or DER format files; this conversion can be
performed using open source tools such as GnuTLS and OpenSSL (see the guide at
http://gagravarr.org/writing/openssl-certs/general.shtml for information on
converting between formats using OpenSSL).

B.1 PEM File Format
Files that have the PEM file format start with:

-----BEGIN CERTIFICATE-----

and end with:

-----END CERTIFICATE-----

They contain a base64-encoded version of the certificates and do not include any
control characters.

The secure communications library GnuTLS (http://www.gnu.org/software/gnutls/)
comes with a command line tool called certtool that can be used for creating
certificates, keys and certificate requests as .pem files. It is documented at
http://www.gnu.org/software/gnutls/manual/html_node/Invoking-certtool.html.

revision 20240129_350 109

Conga User Guide

http://gagravarr.org/writing/openssl-certs/general.shtml
http://www.gnu.org/software/gnutls/
http://www.gnu.org/software/gnutls/manual/html_node/Invoking-certtool.html

B.2 Generating Certificates and Keys
This is not supported on the AIX operating system.

The following example creates a set of certificates similar to the test certificates
provided in the [DYALOG]/TestCertificates directory. This example is operating-
system-independent and uses the GnuTLS open source secure communications library
(see Section B.1).

The CertTool namespace includes code that checks whether certtool.exe exists in
the location specified by EXEC. It then checks the version number of certtool.exe and
signals a DOMAIN ERROR if it is less than 3.4.0 (version 3.4.0 introduced support for
PKCS#7 and PKCS#12 encoded certificates).

To create a set of example certificates

1. Download and unzip the latest version of the GnuTLS secure communications
library from ftp://ftp.gnutls.org/gcrypt/gnutls/.

Download and unzip the latest version of the GnuTLS secure
communications library from your distribution's repository rather than
using the above link.

2. Start a Dyalog Session and load the CertTool namespace into the workspace.
For example:
]LOAD [DYALOG]/Samples/Conga/CertTool/CertTool.dyalog

3. Edit the values of the following names in the CertTool namespace:

EXEC

(in the Init function, under the appropriate operating system)
Fully-qualified path to the certtool.exe file in the bin directory of
the unzipped GnuTLS secure communications library.

The certtool.exe file is assumed to be on the path (this is
true if it has been installed from the distribution's
installation media or repositories).

For example: 'c:\apps\gnutls-
3.4.7\bin\certtool.exe'

revision 20240129_350 110

Conga User Guide

ftp://ftp.gnutls.org/gcrypt/gnutls/

TARGET

(in the Init function, under the appropriate operating system)
Fully-qualified path to the directory in which to store the
generated certificates and files.
For example: 'c:\temp\TestCertificates\'

SERIAL

(in the Init function)
Serial number of the first certificate generated. The other four
certificates that are generated are assigned numbers related to
this using the formula SERIAL+7×¯1+⍳5 (the 7 can be changed
in the CommonAttr function, line [3]).
For example: 100

C

(in the Init function)
Country in which the certificate is to be produced. This will be
included in the subject information of the generated certificates.
For example: UK

O

(in the Init function)
Organisation that is producing the certificate. This will be
included in the subject information of the generated certificates.
For example: DyalogLtd

OU

(in the Init function)
Department within the Organisation that is producing the
certificate. This will be included in the subject information of the
generated certificates.
For example: Test

ST

(in the Init function)
State/county/district in which the Organisation is located. This
will be included in the subject information of the generated
certificates.
For example: Hampshire

revision 20240129_350 111

Conga User Guide

CN

(in the Examples function)
The common name used on the certificate.
For client certificates this is usually the name of a client or
person.
For example: Ken Iverson

For server certificates this is usually the DNS name of the server.
For example: www.dyalog.com

4. Run the CertTool.Examples function.
The directory specified by TARGET is created and populated with further
directories and files.

The generated output is as follows:
l CA directory:

o ca-cert.pem
The public certificate for the example CA. Used to authenticate
client/server certificates.

o caconf.cfg
Information about the CA certificate's properties.

o ca-key.pem
The private key for the example CA. Used to sign client/server and CA
certificates.

l client directory – four files for each ClientCert name defined in the
Examples function. In this example, these are John Doe and Jane Doe (see
lines [17] and [18] in the Examples function):

o <name>.cer
A password-encrypted ASCII file containing the client's key and
certificate in PKCS #7 file format.

o <name>.p12
A binary file containing the client's key and certificate in PKCS #12 file
format.

o <name>-cert.pem
With <name>-key.pem, forms a client certificate's certificate/key pair.

o <name>-key.pem
With <name>-cert.pem, forms a client certificate's certificate/key pair.

l server directory – four files for each ServerCert name defined in the
Examples function. In this example, these are localhost and myserver (see
lines [15] and [16] in the Examples function):

o <name>.cer
A password-encrypted ASCII file containing the server's key and

revision 20240129_350 112

Conga User Guide

certificate in PKCS #7 file format.
o <name>.p12

A binary file containing the server's key and certificate in PKCS #12 file
format.

o <name>-cert.pem
With localhost-key.pem, forms a server certificate's certificate/key pair.

o <name>-key.pem
With localhost-cert.pem, forms a server certificate's certificate/key pair.

revision 20240129_350 113

Conga User Guide

C TLS Flags

TLS flags are employed as part of the certificate checking process; they determine
whether a secure client or server can connect with a peer that does not have a valid
certificate.

The code numbers of the TLS flags described in Table C-1 can be added together and
passed to the DRC.Clt / DRC.Srv functions to control the certificate checking
process. If you do not require any of these flags, then the SSLValidation
parameter of these functions should be set to 0.

Code Name Description

1 CertAcceptIfIssuerUnknown
Accept the peer certificate even if the
issuer (root certificate) cannot be
found.

2 CertAcceptIfSignerNotCA
Accept the peer certificate even if it
has been signed by a certificate not in
the trusted root certificates' directory.

4 CertAcceptIfNotActivated
Accept the peer certificate even if it is
not yet valid (according to its valid
from information).

8 CertAcceptIfExpired
Accept the peer certificate even if it
has expired (according to its valid to
information).

16 CertAcceptIfIncorrectHostName
Accept the peer certificate even if its
hostname does not match the one it
was trying to connect to.

Table C-1: TLS Flags

revision 20240129_350 114

Conga User Guide

Code Name Description

32 CertAcceptWithoutValidating

Accept the peer certificate without
checking it (useful if the certificate is to
be checked manually – see
Section A.15).

64 RequestClientCertificate
Only valid for a server; asks the client
for a certificate but allows connections
even if the client does not provide one.

128 RequireClientCertificate

Only valid for a server; asks the client
for a certificate and refuses the
connection if a valid certificate (subject
to any other flags) is not provided by
the client.

Table C-1: TLS Flags (continued)

TLS flags have the same meanings for a server as for a client. However, for a server
they are applied each time a new connection is established whereas for a client they
are only applied when the client object is created.

revision 20240129_350 115

Conga User Guide

D Conga Libraries

If an application that includes the conga workspace is shipped, then the relevant
libraries will also need to be shipped. The libraries depend on the interpreter that is
shipped with the application. Table D-1 shows the necessary libraries for each
platform ("<bits>" indicates the width – possible values are 64 or 32).

Platform Conga Shared Library Conga SSL Shared Library

AIX conga35_<bits>.so libconga35ssl<bits>.so

Linux conga35_<bits>.so libconga35ssl<bits>.so

macOS conga35_<bits>.dylib libconga35ssl<bits>.dylib

Microsoft Windows conga35_<bits>.dll libconga35ssl<bits>.dll

Raspberry Pi OS conga35_<bits>.so libconga35ssl<bits>.so

Table D-1: Conga libraries for supported platforms

revision 20240129_350 116

Conga User Guide

E Error Codes

Errors can be signalled at several levels within the Conga framework, including from
the operating system, the Conga shared library or the GnuTLS library and within the
APL coded portion of Conga.

If an error is generated when running Conga, then more information on that error can
be obtained by entering:

DRC.Error {errorcode}

in the Dyalog Session.

Table E-1 details some of the errors that can be encountered and provides possible
resolutions.

Code Source Reason for Error Possible Resolution

13 UNIX

Attempted to allocate a
port with number less than
1025 without having root
permission.

Either allocate a port number
above 1024 or sign on as root
(see 4001⌶ in the Dyalog APL
Language Reference Guide).

98 UNIX Specified port number is
already in use.

Allocate a different port number
(it can take several minutes to de-
allocate a port before it can be
reused).

100 Conga
Timeout – nothing was
received within the
specified timeout period.

This is a normal occurrence and
should be accommodated for in
the client/server code.

Table E-1: Possible error codes returned by Conga

revision 20240129_350 117

Conga User Guide

Code Source Reason for Error Possible Resolution

1006 Conga The root object could not
be found.

If using the DRC namespace, try:

¯1 DRC.Init ''

If using the Conga namespace,
try:

root←Conga.Init ''

1105 Conga Could not receive data. Re-establish the connection.

1119 Conga

Socket closed while
receiving data (occurs
when the connection is
broken mid-block transfer).

Reconnect and resend the data.

1135 Conga

Maximum block size (as
defined by the
BufferSize parameter of
the DRC.Clt/DRC.Srv
function) exceeded when
attempting to send/receive
data.

Increase the value of the
BufferSize parameter or chunk
the data into smaller blocks.

1146 Conga

An HTTP message with a
size that exceeded the
maximum defined by the
DOSLimit property was
received .

This could be an indication of a
denial-of-service (DOS) attack.
Investigate and if the cause is not
a DOS attack then increase the
value of the DOSLimit property.

1201 TLS

The handshake process
that sets up a secure
connection between the
client and server before the
certificates are exchanged
is failing.

Ensure that the client and server
are using the same encryption
protocol and that both are using
SSL/TLS.

Table E-1: Possible error codes returned by Conga (continued)

revision 20240129_350 118

Conga User Guide

Code Source Reason for Error Possible Resolution

1202 TLS The certificate supplied by
the peer is not valid.

Supply the TLS flag
CertAcceptWithoutValidating to
the DRC.Srv/DRC.Clt function
(see
Appendix C) to allow this
connection and examine the
certificate manually.

1203 TLS

One or more of the
specified certificate files
could not be loaded (either
the file does not exist, it
cannot be read or it is not a
valid certificate file).

Ensure that the filenames being
passed to the DRC.Clt and
DRC.Srv functions are correct,
that the files exist and that they
are valid certificate files.

1204 TLS There was an error setting
up the TLS libraries.

Ensure that all GnuTLS files are
present and valid.

Table E-1: Possible error codes returned by Conga (continued)

revision 20240129_350 119

Conga User Guide

F Change History

This appendix details the changes made at each version of Conga since the release of
Conga version 2.0.

F.1 Version 3.5
Released with Dyalog version 19.0.

This version:
l adds a new property to the DRC.SetProp function – StartTLS – to support

upgrading an non-secure proxy connection to a secure end host (client and
connection object types only).

F.2 Version 3.4
Released with Dyalog version 18.2.

This version:
l adds features to improve protection against denial-of-service (DOS) attacks

when running in HTTP mode. Specifically:
o a new property to the DRC.SetProp and DRC.GetProp functions –

DOSLimit (root object types only).
o a new named enumeration for the Options parameter –

EnableBufferSizeHttp.
o a new error code – 1146.

l reintroduces support for First-In-First-Out mode. Specifically:
o a new property to the DRC.SetProp and DRC.GetProp functions –

FifoMode (server object types only).
o a new named enumeration for the Options parameter – EnableFifo
o two new events – HTTPFail and HTTPError.

revision 20240129_350 120

Conga User Guide

F.3 Version 3.3
Released with Dyalog version 18.0.

This version:
l adds two new properties to the DRC.GetProp function – CompLevel (root,

client, server and connection object types only) and Options (client, server
and connection object types only).

l adds one new property to the DRC.SetProp function – CompLevel (root,
client, server and connection object types only) and Options (client, server
and connection object types only).

l adds two new parameters to the DRC.Srv and DRC.Clt functions –
CompLevel and Options.

l adds a new namespace, DRC.Options, which contains named enumerations
for the Options parameter.

l adds a new function, DRC.DecodeOptions, which translates a numeric
options setting into a character description using the named enumerations
from the Options namespace.

l extends the datatypes that can be sent by in Raw and BlkRawmode to include
single-byte characters (type 80 or 82).

l modifies the allowed range of numeric values that can be sent using a
WebSocket to include both signed integer (-128 to 127) and unsigned integer
(0 to 255).

l deprecates the DecodeBuffers property of HTTP events and limits its
possible values to 0 or 15 (any other value will generate an error).

F.4 Version 3.2
Released with Dyalog version 17.1.

This version:
l removes samples and utilities from the conga workspace.

This removed functionality is available elsewhere, for example, the
functionality provided by Samples.HTTPGet, Samples.HTTPReq,
Samples.HTTPPost, Samples.HTTPCmd and HTTPUtils is now
accessible through [DYALOG]/Library/Conga/HttpCommand, which can
be loaded using]Load HttpCommand.

l removes support for the FIFOMode server-only property.
l adds the ability to set the compression level when directly transmitting a file.

revision 20240129_350 121

Conga User Guide

l adds a new ErrorText property to the DRC.GetProp function (root object
types only).

F.5 Version 3.1
Released with Dyalog version 17.0.

This version:

l changes the internal format of wide floating-point numbers from DPD to BID.

F.6 Version 3.0
Released with Dyalog version 16.0.

This version:
l adds:

o four new functions to read certificates and return them as instances of
the X509Cert class – DRC.ReadCertFromFile,
DRC.ReadCertFromFolder, DRC.ReadCertFromStore, and
DRC.ReadCertURLs. These supercede the four methods of the same
names in the DRC.X509Cert class (these are still included for
backwards compatibility, but Dyalog Ltd recommends using the new
functions).

o two new server-only properties – FIFOMode and ConnectionOnly
o integrated support for HTTP, including four new events (HTTPBody,

HTTPChunk, HTTPHeader and HTTPTrailer), a new connection mode
(HTTP), messages and utility libraries

o a Sent event to enable the management of data buffers when sending
large amounts of data

o Timeout and Closed events (as an alternative to error codes 100 and
1119)

o a new Conga.Magic function that generates the Magic property value
o two new parameters to the DRC.Srv function – AllowEndPoints and

DenyEndPoints
o two new properties to the DRC.GetProp function – HttpDate (root

object types only) and HostName (server object types only).
o a new option, 3, to the DRC.Send function's close parameter.
o dynamic loading of secure socket support

revision 20240129_350 122

Conga User Guide

o numerous new samples and utilities in GitHub repositories
(https://github.com/Dyalog/samples-conga and
https://github.com/Dyalog/library-conga respectively)

l adds support for:
o multiple isolated Conga root objects
o WebSockets, enabling bi-directional asynchronous data transmission,

including four new events (WSReceive, WSResponse, WSUpgrade and
WSUpgradeReq)

o UDP (User Datagram Protocol) – experimental
o GnuTLS 3.5.16

l adds the ability to:
o temporarily prevent new connections by setting the new Pause property
o transmit files directly without having to first read the data into the

workspace
o permit or deny connections from specific address ranges

l simplifies configuration by establishing a default location for the Conga shared
libraries

l replaces support for the deflate compression scheme with compression levels
0-9 (new property CompLevel)

l removes or relocates seldom-used or atrophied samples

F.7 Version 2.7
Released with Dyalog version 15.0.

This version:
l adds a new namespace, CertTools; this can be used to generate certificates.
l removes the obsolete TelnetServer and TelnetClient classes from the
conga workspace (the associated TestTelnetServer and
TestSecureTelnetServer functions and Parser utility in the Samples
namespace are also removed).

l merges the WebServer.HttpsRunmethod into the WebServer.Run
method.

l allows an empty left argument to be supplied to the Samples.HTTPGet
function.

revision 20240129_350 123

Conga User Guide

https://github.com/Dyalog/samples-conga
https://github.com/Dyalog/library-conga

F.8 Version 2.6
Released with Dyalog version 14.1.

This version:
l adds support for "blocked" raw and ASCII communications modes.
l adds a new DRC.X509Cert.Savemethod that saves the current certificate to

file.
l adds a new strategy option (3) to the DRC.GetProp function's
ReadyStrategy property; this selects the oldest connection but has improved
performance over strategy option 2.

l adds new HTTPCmd operator and HTTPPost function to the Samples
namespace.

l removes the need to specify protocol IPv4 on machines that do not support
IPv6; in this situation, IPv4 will be selected by default.

In addition, this version:
l when using SSL/TLS, uses the Microsoft Windows "Trusted Root

Certification Authorities" certificate store to verify system trust if the
folder specified by the DRC.GetProp function's RootCertDir
parameter contains no certificates

l adds a new DRC.X509Cert.CopyCertificationChainFromStore
method that follows the certificate chain from the current certificate
until a root certificate is found and, if possible, updates the
DRC.GetProp function's PeerCert property so that the certificate
chain is complete.

F.9 Version 2.5
Released with Dyalog version 14.0.

This version:
l incorporates a new version of the GnuTLS library to provide secure

communications using SSL/TLS – this addresses a bug (CVE-2014-0092)
whereby attackers could bypass the SSL/TLS protections.

F.10 Version 2.4
An internal update incorporating features in support of the Remote Interactive
Development Environment (RIDE).

revision 20240129_350 124

Conga User Guide

F.11 Version 2.3
Released with Dyalog version 13.2.

This version:
l adds a new KeepAlive property to the DRC.GetProp function; this causes a

server to send periodic (heartbeat) messages to a client to determine whether
the a connection is still live.

In addition, this version:
l now supports Integrated Windows Authentication (IWA), using the

domain credentials of a Windows user for authentication. Two new
functions, DRC.ClientAuth and DRC.ServerAuth provide client and
server side IWA capabilities respectively.

F.12 Version 2.2
Released with Dyalog version 13.1.

This version:
l adds a new DRC.Version function that returns the current version of Conga.
l adds a new DRC.flate class that implements the deflate compression scheme

(one of several content encoding schemes used by all major web servers and
browsers to optimise the flow of data across networks) using the zlib open
source compression library (for more information on zlib, see http://zlib.net).

l adds a new option, 2, to the DRC.Send function's close parameter; this sends
a command without expecting a response. On the client side, the command is
disposed of after sending. On the server side, the command is disposed of after
receipt, thereby preventing the server from subsequently calling the
DRC.Respond function.

l adds support for deflate HTTP compression in the Samples.HTTPGet
function.

l enhances the DRC.Describe function to report the GnuTLS version.

revision 20240129_350 125

Conga User Guide

http://zlib.net/

F.13 Version 2.1
Released with Dyalog version 13.0.

Version 2.1 modifies how certificates are used to facilitate secure
communications. Changes to the DRC.Srv and DRC.Clt functions when using
certificates mean that Conga 2.0 applications that use certificates will require
minor modification to use Conga 2.1.

This version:
l adds a new DRC.X509Cert class that encapsulates the structure and function

necessary to use X.509 certificates with Conga. This is the recommended
method for providing certificate information to the DRC.Clt and DRC.Srv
functions.

l adds a new DRC.Certs function that provides the underlying functionality
used by the DRC.X509Cert class to read and decode certificates.

l adds a new PeerCert property to the DRC.GetProp function; this returns an
X509Cert object (certificate information).

l modifies the syntax used to pass certificate information to the DRC.Srv and
DRC.Clt functions.

l adds a new strategy option (-1) to the DRC.Init function's reset parameter;
this causes Conga to reload its underlying drivers.

l enhances the Samples.HTTPGet function to accept an X509Cert object as its
(optional) left argument.

l enhances the WebServer.HttpsRunmethod to accept an X509Cert object
argument.

In addition, this version:
l now reads/uses certificates located in Certificate Stores.

revision 20240129_350 126

Conga User Guide

Index

B

BlkRaw mode 14
BlkText mode 13
Block events 13
BlockLast events 13

C

CAs See Certificate authorities
Certificate authorities 26
Certificate chains 34
Certificate revocation lists 28
Certificate stores 28
Classes
DRC.X509Cert 104
Notation when calling 63

Client-side WebSocket Upgrade 42
Closed events 57
Command mode 15
Compatibility
Between object modes 15
Compression levels 55
With Dyalog 5

Compression level 55
Conga object
Modes 13
Names 8
Properties 64
States 10
Types 8

Conga object modes 13
BlkRaw mode 14
BlkText mode 13

Command mode 15
Compatibility 15
HTTP mode 15, 36
Raw mode 14
Text mode 13

Conga object names 8
Conga object properties 64, 83
Conga object states 10
Conga object types 8
Client 9
Client-Server relationship 9
Command 9
Connection 9
Message 9
Root 9
Server 9

Conga objects 8
conga workspace 50
Conga.Init (function) 72
Conga.Magic (function) 73
Conga.New (function) 74
Conga.RootNames (function) 75
Connect events 101

D

DRC.Certs (function) 76
DRC.ClientAuth (function) 77
DRC.Close (function) 77
DRC.Clt (function) 78
DRC.DecodeOptions (function) 80
DRC.Describe (function) 81
DRC.Error (function) 82
DRC.Exists (function) 82
DRC.GetProp (function) 83

revision 20240129_350 127

Conga User Guide

DRC.Init (function) 84
DRC.Names (function) 84
DRC.Options (namespace) 85
DRC.Progress (function) 86
DRC.ReadCertFromFile (function) 86
DRC.ReadCertFromFolder
(function) 87
DRC.ReadCertFromStore
(function) 88
DRC.ReadCertUrls (function) 88
DRC.Respond (function) 89
DRC.RootName (function) 90
DRC.Send (function) 90
DRC.ServerAuth (function) 95
DRC.SetProp (function) 95
DRC.Srv (function) 96
DRC.Tree (function) 99
DRC.Version (function) 101
DRC.Wait (function) 101
DRC.X509Cert (class) 104

E

Error codes 117
Error events 101
Event types 102
Events
Block 13
BlockLast 13
Closed 57
Connect 101
Error 101
HTTPBody 39
HTTPChuck 39
HTTPError 40
HTTPFail 40
HTTPHeader 38
HTTPTrailer 39
Progress 101
Receive 101
Sent 58
Timeout 57
WSReceive 48
WSResponse 44
WSUpgrade 44

Events in HTTP mode 37

F

Functions
Conga.Init 72
Conga.Magic 73
Conga.New 74
Conga.RootNames 75
DRC.Certs 76
DRC.ClientAuth 77
DRC.Close 77
DRC.Clt 78
DRC.DecodeOptions 80
DRC.Describe 81
DRC.Error 82
DRC.Exists 82
DRC.GetProp 83
DRC.Init 84
DRC.Names 84
DRC.Progress 86
DRC.ReadCertFromFile 86
DRC.ReadCertFromFolder 87
DRC.ReadCertFromStore 88
DRC.ReadCertUrls 88
DRC.Respond 89
DRC.RootName 90
DRC.Send 90
DRC.ServerAuth 95
DRC.SetProp 95
DRC.Srv 96
DRC.Tree 99
DRC.Version 101
DRC.Wait 101
Notation when calling 63

H

HTTP mode 15, 36
Events 37
Limiting message size 40
Receiving messages 36
Sending messages 41
WebSocket Protocol 42

HTTP Tunnelling 61
HTTPBody event 39
HTTPChunk event 39

revision 20240129_350 128

Conga User Guide

HTTPError event 40
HTTPFail event 40
HTTPHeader event 38
HTTPTrailer event 39

I

Initialisation 6
Installation 5

L

Libraries 116
Limiting HTTP message size 40

M

Methods
Notation when calling 63

Multi-threading 23

N

Namespaces
Options 85

O

Operators
Notation when calling 63

P

Parallel commands 22
Progress events 101

R

Raw mode 14
Receive events 101
Receiving HTTP messages 36
Return codes 63
Root objects 16

S

Secure connections 25

Sending files 53
Sending HTTP messages 41
Sent events 58
Server-side WebSocket Upgrade 46

T

Text mode 13
Timeout events 57
TLS flags 114
Troubleshooting 117
Tunnelling 61

W

WebSocket protocol 42
Client-side upgrade 42
Server-side upgrade 46

WSReceive events 48
WSResponse events 44
WSUpgrade events 44
WSUpgradeReq events 44

revision 20240129_350 129

Conga User Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	3 Installation
	3.1 Compatibility
	3.1.1 Compatibility with Applications Using Conga Version 2.x

	3.2 Initialisation

	4 Getting Started
	4.1 Conga Objects
	4.1.1 Conga Object Types
	4.1.2 Conga Object States
	4.1.3 Conga Object Modes

	4.2 Root Objects
	4.3 A Simple Conga Client
	4.4 A Simple Conga Server
	4.5 Command Mode
	4.6 Parallel Commands
	4.6.1 Multi-threading

	5 Secure Connections
	5.1 CA Certificates
	5.2 Client and Server Certificates
	5.2.1 Certificate Stores
	5.2.2 Revocation Lists

	5.3 Creating a Secure Client
	5.3.1 Upgrading to a Secure Client

	5.4 Creating a Secure Server
	5.4.1 Upgrading to a Secure Connection

	5.5 Using the DRC.X509Cert Class
	5.5.1 Certificate Chains

	6 HTTP Mode
	6.1 Receiving HTTP Messages
	6.2 HTTP Mode Events
	6.2.1 Event: HTTPHeader
	6.2.2 Event: HTTPBody
	6.2.3 Event: HTTPChunk
	6.2.4 Event: HTTPTrailer
	6.2.5 Event: HTTPFail
	6.2.6 Event: HTTPError

	6.3 Limiting HTTP Message Size
	6.4 Sending HTTP Messages
	6.5 WebSocket Protocol
	6.5.1 Client-side WebSocket Upgrade
	6.5.2 Server-side WebSocket Upgrade
	6.5.3 Transmitting WebSocket Data
	6.5.4 Receiving WebSocket Data
	6.5.5 Secure WebSockets

	7 The Conga Workspace
	8 Utilities and Samples
	8.1 Utilities
	8.2 Samples

	9 Advanced Usage
	9.1 ConnectionOnly Property
	9.2 Sending Files
	9.3 Compression Level
	9.4 Temporarily Prevent New Connections
	9.5 Allow/Deny Connections from Specific Address Ranges
	9.6 Timeout and Closed Events
	9.7 Sent Event
	9.8 Options Parameter
	9.9 Magic Parameter
	9.10 HTTP/1.1 Tunnelling

	A Technical Reference
	A.1 Return Codes
	A.2 Conga Object Properties
	A.3 Function: Conga.Init
	A.4 Function: Conga.Magic
	A.5 Function: Conga.New
	A.6 Function: Conga.RootNames
	A.7 Function: DRC.Certs
	A.8 Function: DRC.ClientAuth
	A.9 Function: DRC.Close
	A.10 Function: DRC.Clt
	A.11 Function: DRC.DecodeOptions
	A.12 Function: DRC.Describe
	A.13 Function: DRC.Error
	A.14 Function: DRC.Exists
	A.15 Function: DRC.GetProp
	A.16 Function: DRC.Init
	A.17 Function: DRC.Names
	A.18 Namespace: DRC.Options
	A.19 Function: DRC.Progress
	A.20 Function: DRC.ReadCertFromFile
	A.21 Function: DRC.ReadCertFromFolder
	A.22 Function: DRC.ReadCertFromStore
	A.23 Function: DRC.ReadCertUrls
	A.24 Function: DRC.Respond
	A.25 Function: DRC.RootName
	A.26 Function: DRC.Send
	A.27 Function: DRC.ServerAuth
	A.28 Function: DRC.SetProp
	A.29 Function: DRC.Srv
	A.30 Function: DRC.Tree
	A.31 Function: DRC.Version
	A.32 Function: DRC.Wait
	A.33 Class: DRC.X509Cert
	A.33.1 Instances of the DRC.X509Cert Class

	B Certificates
	B.1 PEM File Format
	B.2 Generating Certificates and Keys

	C TLS Flags
	D Conga Libraries
	E Error Codes
	F Change History
	F.1 Version 3.5
	F.2 Version 3.4
	F.3 Version 3.3
	F.4 Version 3.2
	F.5 Version 3.1
	F.6 Version 3.0
	F.7 Version 2.7
	F.8 Version 2.6
	F.9 Version 2.5
	F.10 Version 2.4
	F.11 Version 2.3
	F.12 Version 2.2
	F.13 Version 2.1

	Index

